информационный портал по вопросам биомедицинской инженерии

Сейчас на сайте 0 пользователей и 0 гостей.

Сообщество LabData

Вход в систему

аватар: Аксенов Иван Александрович
Введение.

В настоящее время широко применяются цифровые измерительные приборы(ЦИП) , имеющие ряд достоинств по сравнению с аналоговыми электроизмерительными приборами.

Цифровыми называются приборы, автоматически вырабатывающие дискретные сигналы измерительной информации, показания которых представляются в цифровой форме. В цифровых приборах в соответствии со значением мзмеряемой величины образуется код, а затем в соответствии с кодом изменияемая величина представляется на отчетном устройсве в цифровой форме.

Цифровой прибор включает в себя два обязательных функциональных узла: аналогово-цифровой преобразователь(АЦП) и цифровое отчетное устройство.

Аналогово-цифровые преобразователи предназначены для преобразования аналоговых сигналов в соответствующие им цифровые, то есть для преобразования сигналов с неприрывной шкалой значений в сигналы , имеющие имеющие дискретную шкалу значений. А отчетное устройство отражает значение измеряемой величины в цифровой форме.

Классификация методов преобразования напряжения в цифровой код весьма разнообразна. По виду алгоритма работы АЦП подразделяются на преобразователи , использующие методы последовательного счета, поразрядного кодирования и считывания.

Метод преобразования выбирается в зависимости от конкретных условий использования вольтметров , назначения вольтметра и их стоимости.

Одним из отличительнх признаков , характеризующих свойства преобразователей , является наличие или отсутствие в структурной схеме обратной связи. Поэтому по принципу действия АЦП делятся на преобразователи прямого преобразования (без обратной связи) и с обратной связью(уравновешиваемые , замкнутые), например следящие и поразрядного кодирования.

Представителями алгоритма последовательного счета являются преобразователи с промежуточным преобразованием напряжения в другую аналоговую величину ( временный интервал, частоту ), а также интегрирующего типа. Последние обеспечивают высокую помехоустойчивость и точность , но уступают по быстродействию другим

АЦП.

Наиболее распространненым вариантом пребразователей интегрирующего типа являются АЦП с двухтактным интегрированием (dual slope).

Интегрирующие двухтактные преобразователи обладают прекрасной точностью исключают ошибки при распространении сигналов в схеме и компенсируют изменения частоты синхроимпульсов и постоянной времени интегратора, поскольку эти изменения воздействуют в равной степени на оба фронта пилообразного импульса . Преобразователь компенсирует также токи и напряжения смещения компататора , поскольку предусмотрены два перехода через нуль, обеспечивающие это.

Этот метод экономичен при применении в преобразователях высокого разрешения , но из-за большой постоянной времени цепей быстродействие преобразователей не превышает 100 преобразований/ секунду. Как правило, цифровая информация на выходе этих АЦП представляется в специальном коде, предназначенном для непосредственного управления светодиодными цифровыми табло с семисегментными индикаторами либо табло, выполненными на жидких кристаллах. На примере рассмотрим цифровой вольметр Щ-304,его основные характеристики.
 

Основные технические данные цифрового вольтметра Щ-304

1. Пределы измерений, входные сопротивления Rвх на постоянном токе, пределы допускаемой основной погрешности од в расширенной до 120% области измерений на всех пределах указаны в таблице №1.
2. Класс точности прибора 0.05
3. Пределы допускаемой дополнительной погрешности, вызванной изменением температуры окружающего воздуха от нормальной, до любой температуры в пределах от 10 до 35 градусов по Цельсию, равен пределу допускаемой основной погрешности од на каждые 10 градусов изменения температуры.
4. Прибор удовлетворяет требования п.2 в части пределов допускаемой основной погрешности , при изменении напряжений питания от 187V до 242V.
Таблица №1
Верхний предел диапазона измерений од, % Входное сопротивление
Rвх, M 1 mv 10 mv 100 mv 1 V 10 V 100 V 500 V Примечание. Uk -верхний предел;
Ux -показания прибора
5. Дополнительная погрешность прибора, вызванная воздействием внешнего магнитного поля с индукцией 0.4 , синусоидально изменяющееся во времени с частотой сети питания, не превышает половины предела допускаемой основной погрешности.
6. Прибор Щ-304 выдерживает в течении 1 min напряжение, равное конечному значению ближайшего диапазона измерения, на всех диапазонах с индикацией перегрузки на табло прибора значения "12000", кроме предела 500V. На пределе 500V допускается воздействие в течении 1 min напряжения 600V. Прибор Щ-304 выдерживает в течении 1 min напряжение равное 1.5 конечного значения диапазона измерений, и десятикратную перегрузку в течении 10S на пределе 1V.
7. Полярность измеряемого напряжения определяется автоматически.
8. Прибор имеет автоматический и внешний запуск.
9. Отсчет результата измерения производится по отсчетному устройству, индицирующему:
-полярность измеряемого напряжения ;
-пять цифр отсчета;
-десятичную запятую (точку)
Прибор сохраняет результат измерений до ввода новой информации
10. Коэффициент ослабления внешней помехи не хуже:
60 dB -для помехи нормального вида, представляющей собой напряжение частоты питающей сети , приложенное ко входу прибора, величиной не более 100% от предела измерений при отсутствии входного сигнала постоянного тока и не более 20% от предела измерений при входном сигнале, равном пределу измерений;
80 dB -для помехи общего вида, представляющей собой напряжение частоты питающей сети, приложенной ко входу прибора относительно корпуса при несимметрии входа 1K ; 120 dB -для помехи общего вида, представляющей собой напряжение постоянного тока, приложенное ко входу прибора относительно корпуса при несимметрии входа 1K
11. Периодичность ручной калибровки не менее 8часов на всех
нулей на пределе 1mV - 0,5 часа в течении первых двух часов после установления рабочего режима и 1 час при последующей работе без выключения, на пределе 10 mV -8 часов, на остальных пределах - 24 часа

Устройство и работа цифрового вольтметра Щ-304

Прибор состоит из гальванически изолированных друг от друга блока логических операций (цифрового блока). Связь между ними осуществляется через импульсные трансформаторы
Измеряемое напряжение через масштабный преобразователь поступает на преобразователь U/t. Для преобразования постоянного напряжения во временной интервал используется метод двойного интегрирования, при котором заряд интегрирующей емкости производится от измеряемого напряжения за время t0 - t1 , а заряд от источника опорного напряжения за время t1 - t2
С преобразователя U/t импульс t2 , момент окончания разряда, поступает на синхронизатор цифрового блока, где заполняется импульсами высокой частоты. Число импульсов подсчитывается, и результат выдается на цифровое табло прибора.

Заключение

1. Вольтметры, выпускаемые промышленностью, содержат преобразователи разных типов: пиковые, квадратичные, средневыпрямленного значений, и, как правило, они градуируются в значениях различных параметров напряжения. Необходимо знать, в каких значениях градуирована шкала вольтметра, и для какого напряжения. Чтобы найти значения параметров напряжения не соответствующих типу преобразователя, необходимо располагать значениями коэффициентов амплитуды и формы.
2. Измеряя параметры несинусоидального напряжения вольтметром с закрытым входом следует учитывать, что на преобразователь поступает напряжение без постоянной составляющей. Форма этого напряжения отличается от формы входного.
3. При измерении на ВЧ начинают проявляться резонансные свойства входной цепи вольтметра. Если частота подводимого напряжения приближается к резонансной частоте входной цепи, то напряжение возрастает и превышает подводимое.
4. При работе вольтметра на инфранизкой частоте появляются погрешности обусловленные инерционностью отдельных узлов, длительностью происходящих в них переходных процессов и изменениями информационного параметра входного сигнала за время, необходимое для его преобразования. При измерении ВЧ напряжения возникают дополнительные погрешности, если от момента переключения входного сигнала до момента запуска ЦВ проходит время меньше, чем необходимо затухания переходных процессов. Поэтому, зная дополнительные характеристики ЦВ и спектральный состав входного сигнала, можно рассчитать значения дополнительных погрешностей измерений.

Литература

Техническое описание и инструкция по эксплуатации на вольтметр цифровой Щ-304. Мирский Г.Я. Электронные измерения. Москва "Радио и связь"

 

Комментарии