информационный портал по вопросам биомедицинской инженерии

Сейчас на сайте 0 пользователей и 0 гостей.

Вход в систему

аватар: Гость

БМИ уб-109 Шаркова Ольга
Логарифмический усилитель:
    Логарифмический усилитель — вид электронных усилителей, выходное напряжение которого пропорционально логарифму входного напряжения. Логарифмические усилители могут совершать больший комплекс операций по сравнению с классическими линейными усилителями, и их схемы значительно отличаются.

Логарифмические усилители могут совершать больший комплекс операций по сравнению с классическими линейными усилителями, и их схемы значительно отличаются. Наиболее важным назначением ЛУ является не усиление. Главная функция ЛУ — сжатие сигнала широкого динамического диапазона к его децибельному эквиваленту. Возможно, правильнее называть ЛУ логарифмическим преобразователем, т.к. его главным назначением является преобразование сигнала из одной области представления в другую через определённую нелинейную трансформацию.
Для обычного случая, когда все переменные — напряжения, независимо от конструкции усилителя связь между переменными имеет следующий вид:

де VOUT — выходное напряжение
, VY — напряжение наклона (логарифм обычно имеет основание 10, поэтому VY в этом случае берётся в вольтах на декаду),
VIN — входное напряжение,
VX — напряжение пересечения (напряжение VIN, при котором VOUT = 0). Все ЛУ косвенно требуют определения двух значений: VX и VY. 

Наиболее важной целью логарифмических усилителей является не усиление (хотя оно используется для достижения главной функции), главная цель логарифмических усилителей — сжатие сигнала широкого динамического диапазона к его децибельному эквиваленту. Возможно, более подходящий термин — логарифмический преобразователь, так как его главной функцией является преобразование сигнала из одной области представления в другую через определённую нелинейную трансформацию.  
 Самый простой логарифмический усилитель (т. н. традиционной схемотехники) — обычный операционный усилитель с диодом (или транзистором), включённым в цепь обратной связи. Однако сейчас существует большое количество логарифмических усилителей, построенных иным образом (например, с помощью ограничительных ячеек).  

Схема усилителя:


Принцип работы на примере термостабилизированного логарифмического усилителя:
 В таких приборах наибольший динамический диапазон входных токов может быть достигнут использованием трансдиодного включения транзисторов в цепи обратной связи операционного усилителя, температурная ошибка передаточной функции которого равна . Для точных измерений в широком диапазоне температуры такая ошибка недопустима.

В общем случае возможны четыре варианта включения нелинейного элемента в цепь отрицательной обратной связи, для которых характерны различные диапазоны работы. Расширению динамического диапазона и улучшению точности логарифмических преобразователей препятствуют, прежде всего, обратный ток насыщения, омическое сопротивление логарифмирующих переходов и влияние температуры.

Основная погрешность логарифмических преобразователей от изменения температуры связана с нестабильностью падения напряжения на логарифмирующем элементе. Значение этого напряжения зависит от начального тока смещения. Температурная зависимость для кремниевого диода - приблизительно град. Для компенсации температурного изменения падения напряжения на логарифмирующем элементе в последующие цепи включается аналоговый элемент. Для транзисторных логарифмических преобразований используют два подобранных транзистора. С помощью второго транзистора удается также компенсировать падение напряжения на нелинейном элементе.

На примере этого усилителя исследована возможность построения термостабилизированого логарифмического усилителя постоянного тока с динамическим диапазоном в 8 декад, высокой точностью логарифмического преобразования и практически нулевой температурной зависимостью показаний, с помощью транзисторной сборки К198НТ5Б, где один транзистор применяется в для измерения температуры кристалла, а другой для нагревания кристалла.

Приборы с логарифмической характеристикой широко применяются для измерения и регистрации постоянных токов, величина которых во время измерения изменяется в широких пределах.

Рассмотрим структурную схему такого прибора.

Структурная схема термостабилизированного логарифмического усилителя

ОУ1 - входной операционный усилитель;

ОУ2 - выходной операционный усилитель;

ОУ3 - операционный усилитель;

ЛЭ - логарифмирующий элемент;

Н - нагреватель;

ДТ - датчик температуры.

Принцип работы заключается в том, что сигнал поступает на вход входного операционного усилителя, логарифмируется, и через выходной операционный усилитель подается на выход схемы.

Особенностью данной схемы, устраняющей температурную зависимость показаний, является оформление в одном корпусе логарифмического элемента, датчика температуры и нагревателя, что приводит к расширению динамического диапазона и улучшению точности логарифмических преобразований.

Принцип температурной стабилизации в данном приборе осуществляется путем измерения температурным датчиком температуры корпуса, усиления тока разности температур операционным усилителем, при превышении температуры окружающей среды над температурой корпуса, и подачи этой разности на нагреватель. Нагреватель, в свою очередь, повышает температуру корпуса до температуры окружающей среды.

Комментарии

Отправить комментарий

Содержание этого поля является приватным и не предназначено к показу.
  • Доступны HTML теги: <a> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <img> <table> <td> <tr> <hr> <div> <span> <h1> <h2> <h3> <h4> <h5> <h6> <p> <pre> <adress> <center>
  • Строки и параграфы переносятся автоматически.

Подробнее о форматировании

2 + 2 =
Решите эту простую математическую задачу и введите результат. Например, для 1+3, введите 4.

Комментарии