информационный портал по вопросам биомедицинской инженерии

Сейчас на сайте 0 пользователей и 0 гостей.

Вход в систему

аватар: Хмелевский Павел Андреевич

Хмелевский П.А.

Введение

Важное место в медицине критических состояний занимает слежение за показателями функции внешнего дыхания с целью контроля процесса газообмена между организмом и окружающей средой. Основными звеньями этого процесса являются легочная вентиляция, обмен газов между альвеолярным воздухом и кровью, транспорт газов кровью, обмен газов в тканях, клеточное дыхание. Оценка параметров физиологических систем, реализующих эти функции, в зависимости от вида клинического мониторинга обладает различной диагностической ценностью.

Основная часть 

Фотоплетизмографический датчик пульсоксиметра содержит два светоизлучающих диода, работающих один в “красной”, другой - в “инфракрасной” области спектра, а также широкополосный фотоприемник. Конструктивно датчик выполняется таким образом, что при его расположении на поверхности тела человека на фотоприемник поступает свет излучателей, ослабленный участком тканей, содержащим артериальный сосуд. 

На практике используются два типа датчиков, первый, анализирующий излучение светодиодов, проходящих через ткани, и второй - излучение, отраженное от исследуемых тканей. 

Датчики проходящего излучения (рис. 41) укрепляются на кончике пальца руки или ноги, мочке уха пациентов, у детей датчик часто закрепляется на стопе в области большого пальца или на ладони. 

Датчики, регистрирующие рассеянное тканями излучение, размещаются на поверхности тела в проекции сонной или височной артерии / 87 /. Расположение отражательного датчика на головке плода позволяет осуществить фетальный мониторинг сатурации и ЧСС в родах / 88 /. 

Для датчиков пульсоксиметров используются специально разработанные бескорпусные светодиоды красного и инфракрасного диапазонов, размещенные на одной подложке для совмещения оптических осей излучения / 89 /. 

Высокая крутизна спектральной характеристики абсорбции Нв и НвО2 в области красного и инфракрасного излучения (рис.40) требует малого разброса центральной длины волны излучения светодиодов, используемых в датчике. Для красного диапазона длина волны излучения должна находиться в пределах 660± 5 нм, для инфракрасного - 940± 10 нм. 

Технологический разброс длины волны излучения при производстве светодиодов может достигать значения ± 15 нм / 90, 91 /. Поэтому возникает необходимость произвести отбраковку светодиодов по длине волны излучения, что удорожает датчик пульсоксиметра. Некоторые производители мониторной аппаратуры идут по другому пути. Для различных значений длин волн излучения светодиодов вводится коррекция калибровочной зависимости, связывающей отношение R и значение сатурации. Это обстоятельство заставляет с осторожностью относиться к возможности замены датчиков пульсоксиметров без проведения уточнения градуировки прибора. 

В качестве фотоприемников в датчиках пульсоксиметров используются кремниевые фотодиоды, обладающие высокой чувствительностью в области “красного” и “инфракрасного” диапазонов излучения, быстродействием и низким уровнем шума. 

Структурная схема пульсоксиметра показана на рис. 1. Фотоприемник преобразует интенсивность ослабленного тканями “красного” и “инфракрасного” излучения в электрический сигнал, поступающий в тракт усиления. Излучатели датчика включаются поочередно, т.е. коммутируются с частотой порядка 1000 Гц, что позволяет использовать для регистрации излучения один коммутируемый фотоприемник. Далее в усилительном тракте сигналы “красного” и “инфракрасного” излучения разделяются на два канала с помощью импульсов управления коммутатора, переключающих светодиоды. В каждом канале производится измерение двух составляющих ФПГ сигнала, обусловленных постоянной и пульсирующей составляющими абсорбции, необходимых для вычисления величины R и определения сатурации по калибровочной кривой. 

Особенностью усилительного тракта является необходимость усиления сигналов фотоприемника в достаточно большом динамическом диапазоне входных сигналов (более 60дБ). Это требование обусловлено значительным разбросом оптических характеристик кожи, подлежащих тканей, выраженности пульсаций кровотока в месте расположения датчика у различных пациентов. 

Реализация требуемого динамического диапазона достигается использованием цифровой АРУ, охватывающей каскады усиления ФПГ сигнала и источника тока, питающего светодиоды. Система АРУ поддерживает выходные сигналы усилительного тракта на уровне номинального напряжения входа АЦП вычислителя с целью уменьшения шума квантования. 


Рисунок 1 - Структурная схема пульсоксиметра


Вычислитель пульсоксиметра содержит программное обеспечение, реализующее первичную обработку ФПГ сигнала, алгоритмы выделения артериальных пульсаций по “красному” и “инфракрасному” каналам, вычисления отношения R и определения величины SрО2 по занесенной в памяти вычислителя калибровочной зависимости. 

Сложность алгоритмов, используемых при обработке сигналов в пульсоксиметрах, объясняется высоким уровнем помех, сопровождающих регистрацию ФПГ, а также требованиями высокой точности и быстродействия измерений. 

Требования стандартов по пульсоксиметрии устанавливают основную погрешность измерения сатурации в диапазоне (80...99)% равную ± 2%, (50...79)% - ± 3%, для сатурации ниже 50% погрешность обычно не нормируется. Высокая точность пульсоксиметрии для значений сатурации более 80% необходима для надежной дифференциации развития состояния гипоксемии и гипоксии. В этом диапазоне кривая диссоциации гемоглобина имеет малую крутизну и небольшое уменьшение сатурации означает сильное изменение напряжения кислорода в крови, что является предвестником гипоксии. Увеличение допустимой погрешности при низких уровнях оксигенации (менее 80%) является клинически обоснованным, так как в этом диапазоне наибольшей ценностью обладает не абсолютное значение сатурации, а оценка динамики процесса, т.е. изменение сатурации в течение определенного времени. 

Требования быстродействия измерений сатурации связаны с тем, что на определенных стадиях ведения наркоза, например, интубации, возможно быстрое развитие эпизодов гипоксемии, которые могут привести к гипоксическим состояниям, чреватым серьезными осложнениями. Реальным требованием анестезиологической практики является длительность процесса измерения и оценки сатурации, составляющая не более 6...10с. 

Основные помехи, влияющие на точность измерения сатурации, имеют электрическую, оптическую и физиологическую природу. 

Электрические помехи (“наводки”) возникают в усилительном тракте пульсоксиметра в результате влияния внешних электромагнитных полей, создаваемых, в частности, питающей сетью 50 Гц, электрохирургическим инструментом, физиотерапевтической аппаратурой. Подавление помех осуществляется путем частотной фильтрации сигналов, так как полезная информация в ФПГ сигнале сосредоточена, в основном, в диапазоне до 10 Гц, т.е. значительно ниже частотного диапазона помех. Для этой цели используются аналоговые фильтры нижних частот в усилительном тракте, а также цифровая фильтрация, дающая высокую крутизну спада частотной характеристики фильтров. 

Помехи оптического происхождения возникают в случае попадания света от посторонних источников излучения (от хирургических ламп, ламп дневного света и т.п.) на фотоприемник датчика. Под действием данных помех уровень сигнала, снимаемого с фотоприемника, может изменяться, искажая сигнал, обусловленный абсорбцией излучения светодиодов в тканях. Для подавления оптических помех используют метод трехфазной коммутации светодиодов датчика. В первые две фазы коммутации поочередно включаются либо “красный”, либо “инфракрасный” светодиод датчика, в третьей фазе оба светодиода выключаются и фотоприемник регистрирует фоновую засветку датчика, включающую оптические помехи. Напряжение фоновой засветки запоминается и вычитается из сигналов “красного” и “инфракрасного” каналов, получаемых в первые две фазы коммутации. Таким образом, действие фоновой засветки датчика на полезный сигнал ослабляется. 

Коммутация светодиодов с достаточно высокой частотой (намного превышающей частоты оптических помех) позволяет при выделении сигналов различных каналов в усилительном тракте использовать принципы синхронного детектирования, существенно улучшающие соотношения сигнал/шум. Сильная фоновая засветка датчика может стать причиной возникновения искажений в усилительном тракте, поэтому фотоприемник и первые каскады усиления должны обладать линейностью характеристики в большом динамическом диапазоне входных сигналов. Это необходимо для устранения амплитудных искажений переменной составляющей сигнала и подавления перекрестных помех. Ослабление фоновых засветок достигается также конструктивным построением датчика с использованием оптического экранирования. 

Помехи физиологической природы оказывают наиболее сильное влияние на показания пульсоксиметров. К таким помехам можно отнести влияние двигательных артефактов, в том числе и дыхания, непостоянство формы пульсовой волны и снижение ее амплитуды у различных пациентов. Движение конечности с закрепленным на ней датчиком вызывает, например, перераспределение объема крови, находящегося в поле зрения датчика, что дает на выходе фотоприемника помеховый сигнал. Ослабление указанных помех особенно важно при выделении максимумов артериальных пульсаций фотоплетизмографических сигналов обоих каналов. 

Помехоустойчивые алгоритмы выделения артериальных пульсаций и нахождения отношения R (аргумента калибровочной зависимости SpО2) основаны на обработке фотоплетизмографического сигнала во временной или частотной области. 

Во временной области для обнаружения артериальных пульсаций могут быть использованы алгоритмы фиксации диастолических и систолических значений фотоплетизмографического сигнала с помощью известных методов нахождения экстремальных точек сигналов, например, метод дифференцирования и фиксации нуля. Таким образом, для определения отношения R находятся значения сигналов, соответствующие переменной и постоянной составляющей абсорбции. Затем после согласования и усреднения вычисляется величина R и соответственно находится SрО2 / 92 /. 

По алгоритму “разделения” пульсовой волны вычисляются текущие значения отношения Ri на отрезке сигналов между двумя систолическими пульсациями, а затем эти значения определенным образом взвешиваются по критерию минимизации погрешностей и определяется величина R / 91 /. 

Более эффективным с точки зрения помехоустойчивости к артефактам движения представляется алгоритм, сводящийся к задаче нелинейного оценивания, которая может быть решена методом, основанным на максимизации функции правдоподобия /93 /. 

Спектральный подход основывается на том, что частотные компоненты артериальных пульсаций лежат в диапазоне 0,5 ... 4 Гц, а двигательные артефакты находятся в более высокочастотной области (около 7 Гц) и носят случайный характер. Для вычисления отношения R используются первые гармоники разложения Фурье сигналов красного и инфракрасного каналов, что дает более точную оценку аргумента калибровочной зависимости / 94 /. 

Высокой помехоустойчивостью к артефактам движения обладают адаптивные алгоритмы, основанные на априорной информации о характере изменения сигнала и помех. Переменные составляющие сигналов обоих каналов обрабатываются цифровым фильтром, оптимизированным на выделение артериальной пульсации, как это часто делается для выделения QRS комплекса ЭКГ. Полученные сигналы поступают на обнаружитель, работающий по пороговому алгоритму. Порог обнаружения адаптивно изменяется как в зависимости от амплитуды пульсаций, так и в зависимости от априорной вероятности появления очередной пульсации в данный момент времени. 

В момент фиксации обнаружителем максимумов артериальных пульсации вычисляются величины R, которые подвергаются вторичной фильтрации, в результате которой происходит отбраковка ошибочных значений, а также усреднение данных за время нескольких пульсаций. Моменты фиксации артериальных пульсаций используются также в пульсоксиметрах для измерения длительности сердечного цикла, которые после вторичной обработки (сглаживания) пересчитываются в значение ЧСС / 95 /. 

С увеличением интенсивности помех, а также в случае снижения амплитуды пульсаций кровотока в поле зрения датчика показания пульсоксиметра могут не соответствовать уровню сатурации крови кислородом. В этих случаях повышение достоверности пульсоксиметрии может осуществляться с помощью введения в программное обеспечение прибора экспертной системы. 

Анализируя соотношение сигнала и помехи, система в случае недопустимых условий измерения формирует для пользователя сообщения, позволяющие либо исправить положение (устранить артефакты), либо правильно истолковать показания прибора. Наиболее часто формируются сообщения, получаемые путем порогового контроля сигналов в усилительном тракте прибора, говорящие о случайном отключении датчика, “отсутствии пациента”, о сильной фоновой засветке, о снижении амплитуды пульса ниже допустимого с точки зрения шумов. Данные ситуации устраняются путем правильной установки датчика и выбора места его расположения на теле пациента. 

Влияние двигательного артефакта на регистрацию ФПГ сигнала может быть оценено с помощью встроенной экспертной системы, работающей на основе анализа соотношения амплитуд первой и второй гармоник разложения Фурье сигнала артериальных пульсаций. Снижение этого соотношения говорит о росте влияния помех и снижения достоверности показаний прибора. 

При использовании алгоритма “разделения” пульсовой волны увеличение разброса локальных значений отношения R также говорит о снижении достоверности определения сатурации / 94 /. 

Встроенная экспертная система позволяет защитить пользователя от неверных показаний прибора, возникающих в моменты резких изменений условий регистрации сигналов, например, при включении электрохирургического инструмента, ярких вспышек ламп освещения и пр., а также при нарушениях работы датчика. 

Точность измерения сатурации в пульсоксиметрах определяется калибровочной зависимостью, устанавливаемой при градуировке приборов. "Золотым" стандартом градуировки считается проведение одновременных измерений сатурации исследуемым пульсоксиметром и эталонным прибором у добровольцев, вдыхающих газовую смесь заданного состава. В качестве эталонов используются кюветные многоволновые оксиметры, анализирующие пробу артериальной крови. Например, двухлучевой оксиметр ОSМ-2 (Radiometer, Denmark), измеряющий функциональную сатурацию, или оксиметр IL 482 (Instrumentation Laborotory, USA), работающий на четырех длинах волн (535,0; 585,2; 594,5; 626,6 нм), что позволяет определять концентрации НвО2, СОНb, Нb, МеtHb и значение фракционной сатурации с точностью до 0,5% / 96 /. 

Трудность получения клинических данных для низких значений сатурации (менее 80%) в экспериментах in-vivo заставляет экстраполировать калибровочную зависимость в этой области и снижать требования к точности измерений. Достаточно сложная система градуировки пульсоксиметров, описанная в / 90 /, полностью имитирует процесс газообмена в организме человека. Система содержит мембранный оксигенатор (рис.2), источник гидравлических пульсаций, имитирующий артериальный кровоток и модель пальца, на который надевается датчик испытуемого пульсоксиметра. Система имеет пробоотборник крови для анализа с помощью кюветного оксиметра. Данная система позволяет проводить точную градуировку прибора при значениях сатурации менее 50%. При производстве пульсоксиметров для обеспечения точности измерения сатурации используются оптико-электронные имитаторы, имеющие заданные метрологические характеристики.
 

Рисунок 2 - Система in-vivo градуировки пульсоксиметров

Имитатор имеет оптическую головку, помещаемую в поле зрения датчика пульсоксиметра вместо участка тела пациента. Головка имитатора содержит фотоприемник, располагаемый напротив светодиодов датчика, и светодиоды, подобные применяемым в датчике, обращенные к фотоприемнику датчика.

С помощью оптической головки происходит переизлучение световых потоков от светодиодов датчика к его фотоприемнику, причем передача сигналов фотоприемника головки к светодиодам имитирует абсорбцию света в тканях, включая формирование артериальной пульсации. 

Изменение коэффициента передачи от фотоприемника головки к ее излучателям позволяет при испытаниях пульсоксиметра проверить весь допустимый диапазон изменения прозрачности тканей и амплитуды пульсаций. Изменяя соотношения амплитуд переменных составляющих по “красному” и “инфракрасному” каналу оптической головки, можно проверить необходимый диапазон измеряемых значений сатурации в соответствии с калибровкой имитатора, выполняемой по образцовому прибору. 

Способы отображения информации, используемые в пульсоксиметрах, дают наглядное представление об измеряемых физиоловических показателях. Вычисленные значения сатурации крови кислородом и ЧСС отображаются в виде соответствующих цифровых значений на дисплее прибора. 

Фотоплетизмограмма, регистрируемая прибором, может быть представлена в виде кривой на графическом дисплее или в виде пульсирующего “столбика”, следящего за изменением объема артериальной крови в поле зрения датчика. Отображение ФПГ позволяет вести визуальный контроль формы сигнала и обладает диагностической ценностью. Изображение кривой на экране дисплея монитора автоматически масштабируется таким образом, чтобы размах ФПГ занимал большую часть экрана. Для оценки абсолютного значения артериальных пульсаций вводится специальный масштабный индикатор амплитуды пульсаций. Отображение ФПГ отражает состояние периферической гемодинамики, что особенно важно при проведении реанимационных процедур. 

Пульсоксиметры позволяют производить накопление измеряемых данных длительностью до 8 часов. Результаты измерений за требуемый промежуток времени в виде трендов SрО2 и ЧСС могут выводиться на экран дисплея или могут быть распечатаны на встроенном или внешнем принтере.

Список литературы

  1. Пульсоксиметр — медицинское оборудование MIR Medical
  2.  Ю. С. Александрович, В. И. Гордеев, К. В. Пшениснов. Неотложная педиатрия. Учебное пособие. — СпецЛит, 2010. — ISBN 978-5-299-00442-7

Комментарии

Отправить комментарий

Содержание этого поля является приватным и не предназначено к показу.
  • Доступны HTML теги: <a> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <img> <table> <td> <tr> <hr> <div> <span> <h1> <h2> <h3> <h4> <h5> <h6> <p> <pre> <adress> <center>
  • Строки и параграфы переносятся автоматически.

Подробнее о форматировании

4 + 4 =
Решите эту простую математическую задачу и введите результат. Например, для 1+3, введите 4.

Комментарии