информационный портал по вопросам биомедицинской инженерии

Сейчас на сайте 0 пользователей и 0 гостей.

Вход в систему

аватар: АЛЬ-факих али мохаммед

1. Дискретная случайная величина, закон и функция распределения

Дискретной называют случайную величину, значения которой изменяются не плавно, а скачками, т.е. могут принимать только некоторые заранее определённые значения. Например, денежный выигрыш в какой-нибудь лотерее, или количество очков при бросании игральной кости, или число появления события при нескольких испытаниях. Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счётным множеством)
Для сравнения - непрерывная случайная величина может принимать любые значения из некоторого числового промежутка: например, температура воздуха в определённый день, вес ребёнка в каком-либо возрасте, и т.д.

Закон распределения дискретной случайной величины представляет собой перечень всех её возможных значений и соответствующих вероятностей. Сумма всех вероятностей Σpi = 1. Закон распределения также может быть задан аналитически (формулой) и графически (многоугольником распределения, соединяющим точки (xi; pi)

Функция распределения случайной величины - это вероятность того, что случайная величина (назовём её ξ) примет значение меньшее, чем конкретное числовое значение x:
F(X) = P(ξ < X).
Для дискретной случайной величины функция распределения вычисляется для каждого значения как сумма вероятностей, соответствующих всем предшествующим значениям случайной величины. Ниже будет приведён пример, разъясняющий смысл сказанного.

2. Числовые характеристики дискретных случайных величин

Математическое ожидание дискретной случайной величины есть сумма произведений всех её возможных значений на их вероятности:
M(X) = x1p1 + x2p2 + ... + xnpn

Свойства математического ожидания.
1) Математическое ожидание постоянной величины равно самой величине:
М(С) = С
2) Постоянный множитель можно выносить за знак математического ожидания:
М(СХ) = С·М(Х)
3) Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых:
М(Х1 + Х2 + …+ Хn) = М(Х1) + М(Х2) + ... + М(Хn)
4) Математическое ожидание произведения взаимно независимых случайных величин равно произведению математических ожиданий сомножителей:
М(Х1 · Х2 · ... · Хn) = М(Х1) · М(Х2) · ... · М(Хn)

Дисперсия дискретной случайной величины есть математическое ожидание квадрата отклонения случайной величины от её математического ожидания:
D(X) = (x1 - M(X))2p1 + (x2 - M(X))2p2 + ... + (xn- M(X))2pn = x21p1 + x22p2 + ... + x2npn - [M(X)]2

Свойства дисперсии.
1) Дисперсия постоянной величины равна нулю: D(С) = 0
2) Постоянный множитель можно выносить за знак дисперсии, предварительно возведя его в квадрат: D(СХ) = С2 · D(Х)
3) Дисперсия суммы (разности) независимых случайных величин равна сумме дисперсий слагаемых: D(Х1 ± Х2 ± ... ± Хn) = D(Х1) + D(Х2) + ... + D(Хn)

Среднее квадратическое отклонение дискретной случайной величины, оно же стандартное отклонение или среднее квадратичное отклонение есть корень квадратный из дисперсии:
σ(X) = √D(X)

Мода дискретной случайной величины Mo(X) - это значение случайной величины, имеющее наибольшую вероятность. На многоугольнике распределения мода - это абсцисса самой высокой точки. Бывает, что распределение имеет не одну моду.

Коэффициент вариации случайной величины - это относительная мера вариации.
V(X) = |σ(X)/M(X)| · 100%

Асимметрия (коэффициент асимметрии) случайной величины (и дискретной, и непрерывной) As(X) - величина, характеризующая степень асимметрии распределения относительно математического ожидания. Коэффициент асимметрии дискретной случайной величины вычисляется по формуле:
As(X) = [(x1-M(X))3p1 + (x2-M(X))3p2 + ... + (xn-M(X))3pn]/σ3
Если коэффициент асимметрии отрицателен, то либо большая часть значений случайной величины, либо мода находятся левее математического ожидания, и наоборот, если As(X)>0, то правее.

Эксцесс (коэффициент эксцесса) случайной величины (и дискретной, и непрерывной) Ex(X) - величина, характеризующая степень островершинности или плосковершинности распределения, т.е. степень так называемого «выпада». Коэффициент эксцесса дискретной случайной величины вычисляется по формуле:
Ex(X) = [(x1-M(X))4p1 + (x2-M(X))4p2 + ... + (xn-M(X))4pn]/σ4 - 3

пример 2.1

Составить самим закон распределения случайной дискретной величины X, которая может принимать 5 значений. Найти:
– её числовые характеристики
- функцию распределения
– вероятность того, что X примет значение меньше M(X);
– вероятность того, что X примет значение больше 0,5 M(X).

 

Закон распределения дискретной случайной величины X – это перечень всех возможных значений с.в. X , которые она может принимать, и соответствующих вероятностей. Сумма всех вероятностей должна равняться 1.
Проверка: 0,1 + 0,2 + 0,5 + 0,1 + 0,1 = 1
Многоугольник распределения:

 

Математическое ожидание:
M(X) = -2·0,1 - 1·0,2 + 0·0,5 + 1·0,1 + 2·0,1 = -0,1
Дисперсия – это математическое ожидание квадрата отклонений значений случайной величины X от её математического ожидания:
D(X) = (-2 + 0,1)2·0,1 + (- 1 + 0,1)2·0,2 + (0 + 0,1)2·0,5 + (1 + 0,1)2·0,1 + (2 + 0,1)2·0,1 = 1,09
или D(X) = (-2)2·0,1 + (-1)2·0,2 + 02·0,5 + 12·0,1 + 22·0,1 - (-0,1)2 = 1,1 - 0,01 = 1,09
Среднее квадратическое отклонение – это корень квадратный из дисперсии:
σ = √1,09 ≈ 1,044
Коэффициент вариации V(X) = [1,044/0,1] · 100% = 1044%
Коэффициент асимметрии As(X) = [(-2 + 0,1)3·0,1 + (- 1 + 0,1)3·0,2 + (0 + 0,1)3·0,5 + (1 + 0,1)3·0,1 + (2 + 0,1)3·0,1]/1,0443 = 0,200353
Коэффициент эксцесса Ex(X) = [(-2 + 0,1)4·0,1 + (- 1 + 0,1)4·0,2 + (0 + 0,1)4·0,5 + (1 + 0,1)4·0,1 + (2 + 0,1)4·0,1]/1,0444 - 3 = 0,200353

 

 

 

3. Некоторые дискретные распределения

 

3.1 Биномиальное распределение

Биномиальным называют закон распределения дискретной случайной величины X - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события постоянна. Вероятности piвычисляют по формуле бернули 

Для биномиального распределения:
математическое ожидание M(X) = np,
дисперсия D(X) = npq,
мода np-q ≤ Mo ≤ np+p,
коэффициент асимметрии As = (q - p)/√npq,
коэффициент эксцесса Ex = (1 - 6pq)/npq

В пределе при n→∞ биномиальное распределение по своим значениям приближается к нормальному с параметрами a=np и σ=√npq
В пределе при n→∞ и при p→0 биномиальное распределение превращается в распределение Пуассона с параметром λ=np.
 

3.2 Геометрическое рапределение

Производится серия испытаний. Случайная величина - количество испытаний до появления первого успеха (например, бросание мяча в корзину до первого попадания). Закон распределения имеет вид:

  • Если количество испытаний не ограничено, т.е. если случайная величинв может принимать значения 1, 2, ..., ∞, то математическое ожидание и дисперсию геометрического распределения можно найти по формулам M(X) = 1/p, D(X) = q/p2
  • 3.3 Гипергеометрическое рапределение

    Имеется N объектов. Из них n объектов обладают требуемым свойством. Из общего количества отбирается m объектов. Случайная величина X - число объектов из m отобранных, обладающих требуемым свойством. Для вычисления вероятностей используются биномиальные коэффициенты (см. число сочетаний). Закон распределения имеет вид:

  • 3.4 Распределение Пуассона

  • Пусть имеется некоторая последовательность событий, наступающих в случайные моменты времени (будем называть это потоком событий). Интенсивность потока (среднее число событий, появляющихся в единицу времени) равна λ. Пусть этот поток событий - простейший (пуассоновский), т.е. обладает тремя свойствами:
    1) вероятность появления k событий за определённый промежуток времени зависит только от длины этого промежутка, но не от точки отсчёта, другими словами, интенсивность потока есть постоянная величина (свойство стационарности);
    2) вероятность появления k событий в любом промежутке времени не зависит от того, появлялись события в прошлом или нет (свойство «отсутствия последействия»);
    3) появление более одного события за малый промежуток времени практически невозможно (свойствоординарности). Вероятность того, что за промежуток времени t событие произойдёт k раз, равна 
     
  • 4. Непрерывная случайная величина,
    интегральная и дифференциальная функции распределения.

    Непрерывной называют случайную величину, которая может принимать любые значения из некоторого заданного интервала, например, время ожидания транспорта, температура воздуха в каком-либо месяце, отклонение фактического размера детали от номинального, и т.д. Интервал, на котором она задана, может быть бесконечным в одну или обе стороны.

    Плотность вероятности непрерывной случайной величины, она же дифференциальная функция распределения вероятностей - аналог закона распределения дискретной с.в. Но если закон распределения дискретной с.в. графически изображается в виде точек, соединённых для наглядности ломаной линией (многоугольник распределения), то плотность вероятностей графически представляет собой непрерывную гладкую линию (или кусочно-гладкую, если на разных отрезках задаётся разными функциями). Аналитически задаётся формулой.
    Если закон распределения дискретной с.в. ставит каждому значению x в соответствие определённую вероятность, то про плотность распределения такого сказать нельзя. Для непрерывных с.в. можно найти только вероятность попадания в какой-либо интервал. Считается, что для каждого отдельного (одиночного) значения непрерывной с.в. вероятность равна нулю. И графически вероятность попадания в интервал выражается площадью фигуры, ограниченной сверху графиком плотности вероятности, снизу осью ОХ, с боков - рассматриваемым интервалом.
    Свойства плотности вероятности:
    1) Значения функции неотрицательны, т.е. f(x)≥0
    2) Основное свойство плотности вероятности: несобственный интеграл от плотности вероятности в пределах от -∞ до +∞ равен единице (геометрически это выражается тем, что
    площадь фигуры, ограниченной сверху графиком плотности вероятности, снизу - осью OX, равна 1).
        
    Функция распределения случайной величины, она же интегральная функция распределения вероятностей - это функция, определяющая для каждого значения x вероятность того, что случайная величина (ξ) примет значение меньшее, чем x: F(x) = P(ξ < x). Численно функция распределения равна площади фигуры, ограниченной сверху графиком плотности вероятности, снизу осью ОХ, с боков - рассматриваемым интервалом.
    Основные свойства:
    1) Значения функции распределения лежат в интервале [0; 1], т.е. 0 ≤ F(X) ≤ 1
    2) Это функция неубывающая, при x→-∞ F(X)→0, при x→+∞ F(X)→1
    3) Вероятность попадания в интервал (a, b) определяется формулой F(b) - F(a)

    Взаимосвязь интегральной и дифференциальной функций распределения вероятностей:

     

    6. Примеры некоторых непрерывных распределений

     

    6.1 Нормальное распределение

    Нормальное распределение имеет плотность вероятности 1/[σ√2π]·e-(x-a)2/2σ2, где a - математическое ожидание, σ - среднее квадратическое отклонение.

    Значения плотности нормального распределения для конкретного числового значения x можно вычислить в Excel с помощью формулы =НОРМРАСП(x;a;σ;0). Если a = 0, σ = 1, то такое нормальное распределение называется стандартным. Значения плотности стандартного нормального распределения можно посмотреть в таблице или вычислить в Excel с помощью формулы =НОРМРАСП(x;0; 1;0)
    График нормального распределения имеет куполообразную форму, он симметричен относительно своего математического ожидания, а на степень его островершинности влияет величина среднего квадратичного отклонения σ.


     

    Асимметрия, эксцесс, мода и медиана нормального распределения равны:
    As(X) = 0; Ex(X) = 0; Mo(X) = a; Me(X) = a, где а - математическое ожидание.
     
    Интегральная функция нормального распределения вероятностей:


    Интегральная функция распределения вероятностей показывает вероятность того, что с.в. примет значение меньшее, чем x: F(x) = P(ξ < x). Численно она равна площади криволинейной трапеции, ограниченной сверху графиком плотности вероятности, снизу осью OX, на интервале от -∞ до x. Ниже дана иллюстрация.

    6.2 Равномерное распределение

    Плотность вероятности равномерного распределения сохраняет на интервале (a, b) постоянное значение, вне этого интервала плотность вероятности равна нулю. Исходя из основного свойства плотности вероятности,
    f(x) = 1/(b-a) на интервале (a;b).
    Интегральную функцию распределения (вероятность того, что с.в. примет значение меньшее, чем x) находим как интеграл от -∞ до x от плотности вероятности: F(x) = (x-a)/(b-a)
    Графики плотности вероятности и функции равномерного распределения:

    Математическое ожидание равномерного распределения: M(X) = (a + b)/2
    Дисперсия равномерного распределения: D(X) = (b - a)2/12
    Среднее квадратичное отклонение равномерного распределения: σ(X) = (b - a)/(2√3)
    Список литературы
    http://natalymath.ru/theory_of_ver2.html

Комментарии

Отправить комментарий

Содержание этого поля является приватным и не предназначено к показу.
  • Доступны HTML теги: <a> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <img> <table> <td> <tr> <hr> <div> <span> <h1> <h2> <h3> <h4> <h5> <h6> <p> <pre> <adress> <center>
  • Строки и параграфы переносятся автоматически.

Подробнее о форматировании

10 + 0 =
Решите эту простую математическую задачу и введите результат. Например, для 1+3, введите 4.

Комментарии