информационный портал по вопросам биомедицинской инженерии

Сейчас на сайте 0 пользователей и 0 гостей.

Вход в систему

аватар: Седунина Юлия Олеговна

Объект - все то, на что направлена человеческая деятельность.
Гипотеза - предсказание о свойствах объекта основанное на неполных данных.
Аналогия - суждение о каком-либо частном сходстве объектов. Аналогия связывает гипотезу с экспериментом.
Модель - объект-заместитель объекта, обеспечивающий изучение некоторых свойств оригинала. Модель обеспечивает наглядность исследования объекта- оригинала.
Модель - логическая схема, упрощающая рассуждения и логические построения, позволяющие проводить эксперименты, и уточняющая природу явлений.
Моделирование - замещение одного объекта другим с целью получения информации о важнейших свойствах объекта - оригинала с помощью объекта-модели (далее по тексту для упрощения заменяем объект-оригинал на объект, объект-модель на модель).
Адекватность модели объекту - совпадение результатов моделирования и результатов экспериментов с объектом.
При моделировании сложных объектов (систем) рассматривают: макромоделирование - моделирование системы в целом на уровне подсистем; микромоделирование - моделирование систем или подсистем на уровне элементов.

Модель и моделирование – это универсальные понятия, атрибуты одного из наиболее мощных методов познания в любой профессиональной области, познания объекта, процесса, явления (через модели и моделирование).
 
Модели и моделирование объединяют специалистов различных областей, работающих над решением межпредметных проблем, независимо от того, где эта модель и результаты моделирования будут применены.
 
Модель – это некоторое представление или описание оригинала (объекта, процесса, явления), которое при определенных предложениях, гипотезах о поведении оригинала позволяет замещать оригинал для его лучшего изучения, исследования, описания его свойств.
 
Пример. Рассматривая физическое тело, брошенное с высоты h и падающее свободно в течение t времени, можно записать соотношение: h = gt2/2 . Это физико-математическая модель системы (математическая модель физической системы) пути при свободном падении тела. При построении этой модели приняты следующие гипотезы: 1) падение происходит в вакууме (то есть коэффициент сопротивления воздуха равен нулю); 2) ветра нет; 3) масса тела неизменна; 4) тело движется с одинаковым постоянным ускорением g в любой точке.
 
Слово "модель" (лат. modelium) означает "мера", "способ", "сходство с какой-то вещью".
Проблема моделирования состоит из трех взаимосвязанных задач: построение новой (или адаптация известной) модели; исследование модели (разработка метода исследования или адаптация, применение известного); использование (на практике или теоретически) модели.

Классификацию моделей проводят по различным критериям.
Модель – статическая, если среди параметров описания модели нет (явно) временного параметра.
Модель – динамическая, если среди параметров модели явно выделен временной параметр.
Модель – дискретная, если описывает поведение оригинала лишь дискретно, например, в дискретные моменты времени (для динамической модели).
Модель – непрерывная, если описывает поведение оригинала на всем промежутке времени.
Модель – детерминированная, если для каждой допустимой совокупности входных параметров она позволяет определять однозначно набор выходных параметров; в противном случае – модель недетерминированная, стохастическая (вероятностная).
Модель – функциональная, если представима системой функциональных соотношений (например, уравнений).
Модель – теоретико-множественная, если представима некоторыми множествами и отношениями их и их элементов.
Модель – логическая, если представима предикатами, логическими функциями и отношениями.
Модель – инфрмационно-логическая, если она представима информацией о составных элементах, подмоделях, а также логическими отношениями между ними.
Модель – игровая, если она описывает, реализует некоторую игровую ситуацию между элементами (объектами и субъектами игры).
Модель – алгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Введение такого, на первый взгляд, непривычного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом ее исследования), на наш взгляд, вполне обосновано, так как не все модели могут быть исследованы или реализованы алгоритмически.
Модель – графовая, если она представима графом (отношениями вершин и соединяющих их ребер) или графами и отношениями между ними.
Модель – иерархическая (древовидная), если она представима иерархической структурой (деревом).
Модель – языковая, лингвистическая, если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой. Иногда такие модели называют вербальными, синтаксическими и т.п.
Модель – визуальная, если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.
Модель – натурная, если она есть материальная копия оригинала.
Модель – геометрическая, если она представима геометрическими образами и отношениями между ними.
Модель – имитационная, если она построена для испытания или изучения, проигрывания возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели.
Есть и другие типы моделей.
Пример. Модель F = am – статическая модель движения тела по наклонной плоскости. Динамическая модель типа закона Ньютона: F(t) = a(t)m(t) или, еще более точно и лучше, F(t)=s''(t)m(t). Если рассматривать только t = 0.1, 0.2, …, 1 (с), то модель St = gt2/2 или числовая последовательность S0 = 0, S1 = 0.01g/2, S2 = 0.04g, …, S10 = g/2 может служить дискретной моделью движения свободно падающего тела. Модель S = gt2/2, 0 < t < 10 непрерывна на промежутке времени (0;10).
Пусть модель экономической системы производства товаров двух видов 1 и 2, соответственно, в количестве x1 и x2 единиц и стоимостью каждой единицы товара a1 и a2 на предприятии описана в виде соотношения a1x1 + a2x2 = S , где S – общая стоимость произведенной предприятием всей продукции (вида 1 и 2). Можно ее использовать в качестве имитационной модели, определяя общую стоимость S в зависимости от тех или иных значений объемов производимых товаров. Приведенные выше физические модели – детерминированные.
Если в модели S= gt2/2, 0 < t < 10 мы учтем случайный параметр – порыв ветра с силой p при падении тела, например, просто так: S(p) = g(p)t2/2, 0 < t < 10 , то мы получим стохастическую модель (уже не свободного!) падения. Это – также функциональная модель.
Для множеств X = {Николай, Петр, Николаев, Петров, Елена, Екатерина, Михаил, Татьяна} опишем отношения Y: "Николай – супруг Елены", "Екатерина – супруга Петра", "Татьяна – дочь Николая и Елены", "Михаил – сын Петра и Екатерины". Тогда множества X и Y могут служить теоретико-множественной моделью двух семей.
 
Тип модели зависит от связей и отношений его подсистем и элементов, окружения, а не от его физической природы.
Пример. Математические описания (модели) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. являются одинаковыми с точки зрения их описания, хотя процессы различны.
Основные свойства любой модели:

  • целенаправленность;
  • конечность;
  • упрощенность;
  • приблизительность;
  • адекватность;
  • информативность;
  • полнота;
  • замкнутость и др.

Жизненный цикл моделируемой системы:

  • сбор информации;
  • проектирование;
  • построение;
  • исследование;
  • оценка;
  • модификация.

Наука моделирования состоит в разделении процесса моделирования (системы, модели) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности.
Приведем примеры применения математического, компьютерного моделирования в различных областях:

  • энергетика: управление ядерными реакторами, моделирование термоядерных процессов, прогнозирование энергетических процессов, управление энергоресурсами и т.д.;
  • экономика: моделирование, прогнозирование экономических и социально-экономических процессов, межбанковские расчеты, автоматизация работ и т.д.;
  • космонавтика: расчет траекторий и управления полетом космических аппаратов, моделирование конструкций летательных аппаратов, обработка спутниковой информации и т.д.;
  • медицина: моделирование, прогнозирование эпидемий, инфекционных процессов, управление процессом лечения, диагностика болезней и выработка оптимальных стратегий лечения и т.д.;
  • производство: управление техническими и технологическими процессами и системами, ресурсами (запасами), планирование, прогнозирование оптимальных процессов производства и т.д.;
  • экология: моделирование загрязнения экологических систем, прогноз причинно-следственных связей в экологической системе, откликов системы на те или иные воздействия экологических факторов и т.д.;
  • образование: моделирование междисциплинарных связей и систем, стратегий и тактик обучения и т.д.;
  • военное дело: моделирование и прогнозирование военных конфликтов, боевых ситуаций, управления войсками, обеспечение армий и т.д.;
  • политика: моделирование и прогнозирование политических ситуаций, поведения коалиций различного характера и т.д.;
  • социология, общественные науки: моделирование и прогнозирование поведения социологических групп и процессов, общественного поведения и влияния, принятие решений и т.д.;
  • СМИ: моделирование и прогнозирование эффекта от воздействия тех или иных сообщений на группы людей, социальные слои и др.;
  • туризм: моделирование и прогнозирование потока туристов, развития инфраструктуры туризма и др.;
  • проектирование: моделирование, проектирование различных систем, разработка оптимальных проектов, автоматизация управления процессом проектирования и т.д.

Современное моделирование сложных процессов и явлений невозможно без компьютера, без компьютерного моделирования.
Компьютерное моделирование – основа представления (актуализации) знаний как в компьютере, так и с помощью компьютера и с использованием любой информации, которую можно актуализировать с помощью ЭВМ.
Разновидность компьютерного моделирования – вычислительный эксперимент, осуществляемый экспериментатором над исследуемой системой или процессом с помощью орудия эксперимента – компьютера, компьютерной технологии. Вычислительный эксперимент позволяет находить новые закономерности, проверять гипотезы, визуализировать события и т.д.
Компьютерное моделирование от начала и до завершения проходит следующие этапы.

  1. Постановка задачи.
  2. Предмодельный анализ.
  3. Анализ задачи.
  4. Исследование модели.
  5. Программирование, проектирование программы.
  6. Тестирование и отладка.
  7. Оценка моделирования.
  8. Документирование.
  9. Сопровождение.
  10. Использование (применение) модели.

 

Комментарии

Отправить комментарий

Содержание этого поля является приватным и не предназначено к показу.
  • Доступны HTML теги: <a> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <img> <table> <td> <tr> <hr> <div> <span> <h1> <h2> <h3> <h4> <h5> <h6> <p> <pre> <adress> <center>
  • Строки и параграфы переносятся автоматически.

Подробнее о форматировании

5 + 11 =
Решите эту простую математическую задачу и введите результат. Например, для 1+3, введите 4.

Комментарии