информационный портал по вопросам биомедицинской инженерии

Сейчас на сайте 0 пользователей и 0 гостей.

Вход в систему

Недавно присоединились

  • Абдусаламов Магом...
  • Комиссаров Мэлор ...
  • Олег Матвеевич
  • вусенко алена ива...
  • Краснозобов Жигер...
аватар: АЛЬ-факих али мохаммед
Содержание :
 
Введение
1. ОСНОВНЫЕ РАБОЧИЕ ОПРЕДЕЛЕНИЯ
2. НАУЧНО-ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МЕТОДА
3. ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ МЕТОДА И ПОКАЗАНИЯ К ЕГО ИСПОЛЬЗОВАНИЮ
4. ОСНОВНЫЕ МЕДИЦИНСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
4.1. Требования к длительности регистрации сердечного ритма
4.2. Методика исследования ВСР
4.2.1. Оперативные исследования в условиях относительного покоя
4.2.2. Исследования при проведении функциональных тестов
5. ОСНОВНЫЕ МЕТОДЫ АНАЛИЗА ВСР
5.1. Статистические методы
5.2. Геометрические методы (вариационная пульсометрия)
5.3. Автокорреляционный анализ
5.4. Корреляционная ритмография - скатерография
6. ВОСПРОИЗВОДИМОСТЬ И СРАВНИМОСТЬ ДАННЫХ
7. ОЦЕНКА РЕЗУЛЬТАТОВ АНАЛИЗА ВСР
7.1. Показатели статистического анализа (временной анализ)
7.2. Показатели спектрального анализа (частотный анализ)
7.3. Комплексная оценка функционального состояния
7.4. Оценка результатов анализа ВСР при проведении функциональных проб
8. ЗАКЛЮЧЕНИЕ.
9. ЛИТЕРАТУРА.
 
 
Введение
 
«вариабельность» — это  такое свойство биологических процессов, которое связано с необходимостью приспособления организма к изменяющимся условиям окружающей среды. Другими словами вариабельность – это изменчивость различных параметров, в том числе и ритма сердца, в ответ на воздействие каких-либо факторов. Следовательно, вариабельность сердечного ритма (ВСР) отражает работу сердечно-сосудистой системы и работу механизмов регуляции целостного организма. Учеными была обнаружена взаимосвязь между вегетативной нервной системой и смертностью от сердечно-сосудистых заболеваний, включая внезапную смерть.
Вариабельность сердечного ритма представляет собой наиболее удобный показатель, благодаря которому можно оценить эффективность взаимодействия сердечно-сосудистой и других систем организма. Данный анализ становится популярным благодаря своей простоте, так как является не инвазивным. Это обследование начинают активно использовать в функциональной диагностике, так как показатель вариабельности сердечного ритма позволяет дать общую оценку о состоянии пациента, так как отражают жизненно  важные показатели управления физиологическими функциями организма, к ним относят  функциональные резервы механизмов его управления и вегетативный баланс.
Влияние симпатического нерва ведет к увеличению частоты сердечных сокращений за счет стимуляции бета-адренорецепторов синусового узла. В свою очередь блуждающий нерв стимулирует холинорецепторы синусового узла и ведет к брадикардии. Симпатическая система имеет большее влияние над желудочками, в то время как блуждающий нерв оказывает действие на синусовый и атриовентрикулярные узлы.
На частоту сердечных сокращений влияют фазы дыхания. Во время вдоха угнетается вагусное влияние (влияние блуждающего нерва) и ускоряется ритм. Во время выдоха сердечная деятельность замедляется, так как раздражается блуждающий нерв. Можно сказать, что сердечный ритм является реакцией организма на действие раздражителей внутренней и внешней среды. Следовательно, изменение ритма будет ответной реакцией на изменение каких-либо факторов и регулируется симпатическим и парасимпатическим отделами нервной системы.
Сердечно-сосудистая система — яркий пример уникальной системы управления, построенной по иерархическому принципу, где каждый нижний уровень в нормальных условиях функционирует автономно. При изменениях внешней среды и/или при развитии патологического процесса с целью сохранения гомеостаза активируются высшие уровни управления. Процесс адаптации требует расходования информационных, энергетических и метаболических ресурсов организма. Управление ресурсами зависит от предъявленных к организму  требований внешней среды и осуществляется через нервные, эндокринные,  гуморальные механизмы, которые  условно можно разделить на автономные и центральные. Вмешательство центральных механизмов управления в работу автономных происходит только в том случае, когда последние перестают оптимально выполнять свои задачи.
 
 
1. ОСНОВНЫЕ РАБОЧИЕ ОПРЕДЕЛЕНИЯ
 
Анализ ВСР является методом оценки состояния механизмов регуляции физиологических функций в организме человека и животных, в частности, общей активности регуляторных механизмов, нейрогуморальной регуляции сердца, соотношения между симпатическим и парасимпатическим отделами вегетативной нервной системы.
Текущая активность симпатического и парасимпатического отделов является результатом реакции многоконтурной и многоуровневой системы регуляции кровообращения, изменяющей во времени свои параметры для достижения оптимального приспособительного ответа, который отражает адаптационную реакцию целостного организма.
Адаптационные реакции индивидуальны и реализуются у разных лиц с различной степенью участия функциональных систем, которые обладают в свою очередь обратной связью, изменяющейся во времени и имеющей переменную функциональную организацию. Метод основан на распознавании и измерении временных интервалов между R-зубцами ЭКГ (R-R–интервалы), построении динамических рядов кардиоинтервалов и последующего анализа полученных числовых рядов различными математическими методами. Динамический ряд кардиоинтервалов называют кардиоинтервалограммой (КИГ).
Динамический ряд кардиоинтервалов может быть отнесен к числу стационарных или нестационарных. Стационарными называют случайные процессы, протекающие приблизительно однородно и имеющие вид непрерывных колебаний вокруг некоторого среднего значения. Стационарные процессы характеризуются эргодичностью, т.е. усреднение по времени соответствует усреднению по множеству реализаций. Иными словами на любом участке времени мы должны получать одни и те же характеристики. Нестационарные ( или переходные) процессы имеют определенную тенденцию развития во времени и их характеристики зависят от в начала отсчета. Практически в каждой кардиоинтервалограмме содержатся элементы нестационарности (фрактальные компоненты). В данных методических рекомендациях кардиоинтервалограмма рассматривается как стационарный случайный процесс с соответствующей интерпретацией получаемых в результате ее анализа данных. Для оценки фрактальных компонентов кардиоинтервалограммы в последние годы активно развиваются методы нелинейной динамики (Goldberger A., 1991; Флейшман А.Н., 1999, 2001; Гаврилушкин А.П., Маслюк А.П., 2001)
При анализе динамических рядов кардионтервалов следует различать кратковременные («короткие») и долговременные («длинные») записи. Под последними, как правило, понимают данные, получаемые при 24-х и 48 часовом мониторировании ЭКГ (Холтеровское мониторирование). К так называемым «коротким» записям относят данные исследований, проводимых в течение минут, десятков минут или нескольких часов.
Динамические ряды кардиоинтервалов могут быть получены при анализе любых кардиографических записей (электрических, механических, ультразвуковых и т.д.), однако в данном документе рассматриваются только данные анализа электрокардиосигналов.
Анализ ВСР включает три этапа:
1. Измерение длительности R-R–интервалов и представление динамических рядов кардиоинтервалов в виде кардиоинтервалограммы ( см. рис. 1);
2. Анализ динамических рядов кардиоинтервалов;
3. Оценку результатов анализа ВСР.

Рис. 1. Формирование кардиоинтервалограммы (КИГ) при вводе электрокардиографического сигнала. Вверху – электрокардиограмма (ЭКГ), внизу КИГ(по оси ординат – длительность кардиоинтервалов в миллисекундах; по оси абсцисс время регистрации кардиоинтервалов (час., мин., сек). Стрелками отмечены элементы КИГ, соответствующие интервалам между RR-зубцами ЭКГ.

Измерение длительности R-R-интервалов производится аппаратным или программным путем с точностью до 1 миллисекунды. Проблема распознавания R-зубцов ЭКГ в различных аппаратно-программных комплексах решается по разному. Представление динамических рядов кардиоинтервалов осуществляется в числовом или графическом виде.
Методы анализа динамических рядов кардиоинтервалов можно разделить на визуальные и математические. Визуальный анализ кардиоинтервалограмм ( ритмограмм) был введен Д. Жемайтите (1965, 1972). Предложенная ею классификация ритмограмм до настоящего времени не потеряла своей актуальности (Миронова Т.В., Миронов В.А. 1999). Математические методы анализа можно разделить на три больших класса:
·  исследование общей вариабельности (статистические методы или временной анализ).
· исследование периодических составляющих ВСР (частотный анализ).
· исследование внутренней организации динамического ряда кардиоинтервалов (автокорреляционный анализ, корреляционная ритмография, методы нелинейной динамики).
Полученные в результате анализа ВСР числовые значения (показатели ВСР) оцениваются по-разному различными исследователями в зависимости от используемой научно-теоретической концепции.
2. НАУЧНО-ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МЕТОДА
 
Основная информация о состоянии систем, регулирующих ритм сердца, заключена в «функциях разброса» длительностей кардиоинтервалов. При этом необходимо учитывать и текущий уровень функционирования системы кровообращения. При анализе ВСР речь идет о так называемой синусовой аритмии, которая отражает сложные процессы взаимодействия различных контуров регуляции сердечного ритма. При наличии нарушений ритма, различного происхождения, требуется применение специальных методов по восстановлению стационарности изучаемого процесса или необходимо использовать особые аналитические подходы.
Динамический ряд кардиоинтервалов может анализироваться и оцениваться на основе использования различных научно-теоретических концепций. В зависимости от научных или практических задач следует рекомендовать использование одного из следующих трех подходов:
1. Рассматривать изменения сердечного ритма в связи с адаптационной реакцией целостного организма, как проявление различных стадий общего адаптационного синдрома (Г.Селье, 1961).
2. Рассматривать колебания длительностей кардиоинтервалов как результат влияния многоконтурной, иерархически организованной многоуровневой системы управления физиологическими функциями организма. Этот подход основан на положениях биологической кибернетики (В.В. Парин, Р.М. Баевский, 1966) и теории функциональных систем (П.К. Анохин, 1975). При этом изменения показателей вариабельности сердечного ритма можно считать обусловленными формированием различных функциональных систем, соответствующих требуемому на данный момент результату.
3. Рассматривать изменения сердечного ритма в связи с деятельностью механизмов нейрогормональной регуляции как результат активности различных звеньев вегетативной нервной системы .
Теория адаптации в настоящее время является одним из фундаментальных направлений современной биологии и физиологии. Адаптационная деятельность организма человека и животных не только обеспечивает выживание и эволюционное развитие, но и повседневное приспособление к изменениям окружающей среды.
Теория Г.Селье об общем адаптационном синдроме описывает фазовый характер адаптационных реакций и обосновывает ведущую роль истощения регуляторных систем при острых и хронических стрессорных воздействиях в развитии большинства патологических состояний и заболеваний. Система кровообращения может рассматриваться как чувствительный индикатор адаптационных реакций целостного организма (В.В.Парин и соавт., 1967), а вариабельность сердечного ритма хорошо отражает степень напряжения регуляторных систем, обусловленную возникающей в ответ на любое стрессорное воздействие активацией системы гипофиз-надпочечники и реакцией симпатоадреналовой системы.
Более детальный анализ ВСР с применением методов автокорреляционного и спектрального анализа привел к разработке подхода, основанного на положениях биологической кибернетики и теории функциональных систем. В основе этого подхода лежит представление о вариабельности ритма сердца как о результате влияния на систему кровообращения многочисленных регуляторных механизмов (нервных, гормональных, гуморальных).
Функциональная система регуляции кровообращения представляет собой многоконтурную, иерархически организованную систему, в которой доминирующая роль отдельных звеньев определяется текущими потребностями организма. Наиболее простая двухконтурная модель регуляции сердечного ритма основывается на кибернетическом подходе, при котором система регуляции синусового узла может быть представлена в виде двух взаимосвязанных уровней (контуров): центрального и автономного с прямой и обратной связью (см. рис. 2). При этом, воздействие автономного уровня (контура) идентифицируется с дыхательной, а центрального с недыхательной аритмией.

Рис. 2. Схема двухконтурной модели регуляции сердечного ритма.
 

 
Рабочими структурами автономного контура регуляции являются: синусовый узел (СУ), блуждающие нервы и их ядра в продолговатом мозгу (контур парасимпатической регуляции). При этом дыхательная система рассматривается как элемент обратной связи в автономном контуре регуляции сердечного ритма (СР).
 
Деятельность центрального контура регуляции, который идентифицируется с симпатоадреналовыми влияниями на ритм сердца, связана с недыхательной синусовой аритмией (СА) и характеризуется различными медленноволновыми составляющими сердечного ритма. Прямая связь между центральным и автономным контурами осуществляется через нервные (в основном симпатические) и гуморальные связи. Обратная связь обеспечивается афферентной импульсацией с барорецепторов сердца и сосудов, хеморецепторов и обширных рецепторных зон различных органов и тканей.
Автономная регуляция в условиях покоя характеризуется наличием выраженной дыхательной аритмией. Дыхательные волны усиливаются во время сна, когда уменьшаются центральные влияния на автономный контур регуляции. Различные нагрузки на организм, требующие включения в процесс управления СР центрального контура регуляции, ведут к ослаблению дыхательного компонента СА и к усилению ее недыхательного компонента.
Центральный контур регуляции СР – это сложнейшая многоуровневая система нейрогуморальной регуляции физиологических функций, которая включает в себя многочисленные звенья от подкорковых центров продолговатого мозга до гипоталамо-гипофизарного уровня вегетативной регуляции и коры головного мозга. Ее структуру можно схематично представить состоящей из трех уровней. Этим уровням соответствуют не столько анатомо-морфологические структуры мозга, сколько определенные функциональные системы или уровни регуляции:
1-й уровень обеспечивает организацию взаимодействия организма с внешней средой (адаптация организма к внешним воздействиям). К нему относится центральная нервная система, включая корковые механизмы регуляции, координирующая функциональную деятельность всех систем организма в соответствии с воздействием факторов внешней среды (уровень А).
2-й уровень осуществляет равновесие различных систем организма между собой и обеспечивает межсистемный гомеостаз. Основную роль в этом уровне играют высшие вегетативные центры (в том числе гипоталамо-гипофизарная система), обеспечивающие гормонально-вегетативный гомеостаз (уровень Б).
3-й уровень обеспечивает внутрисистемный гомеостаз в различных системах организма, в частности в кардиореспираторной системе (систему кровообращения и систему дыхания можно рассматривать как единую функциональную систему). Здесь ведущую роль играют подкорковые нервные центры, в частности вазомоторный центр как часть подкоркового сердечно-сосудистого центра, оказывающего стимулирующее или угнетающее действие на сердце через волокна симпатических нервов (уровень В).
Недыхательная СА представляет собой колебания СР с периодами выше 6-7 секунд (ниже 0,15 Гц). Медленные (недыхательные) колебания сердечного ритма коррелируют с аналогичными волнами артериального давления (АД) и плетизмограммы. Различают медленные волны 1-го, 2-го и более высоких порядков. Структура СР включает не только колебательные компоненты в виде дыхательных и недыхательных волн, но и непериодические процессы (так называемые фрактальные компоненты).
Происхождение этих компонентов СР связывают с многоуровневым и нелинейным характером процессов регуляции сердечного ритма и наличием переходных процессов. Ритм сердца не является строго стационарным случайным процессом с эргодическими свойствами, что подразумевает повторяемость его статистических характеристик на любых произвольно взятых отрезках.
Вариабельность сердечного ритма отражает сложную картину разнообразных управляющих влияний на систему кровообращения с интерференцией периодических компонентов разной частоты и амплитуды: с нелинейным характером взаимодействия разных уровней управления.
При использовании записей СР с длительностью менее 5 минут мы искусственно ограничиваем число изучаемых регуляторных механизмов (контуров управления), сужаем диапазон изучаемых управляющих воздействий. Чем длиннее ряд анализируемых кардиоинтервалов, тем больше уровней регуляторного механизма можно исследовать.
Наиболее близок и понятен физиологам и особенно, клиницистам подход к анализу ВРС, основанная на представлениях о механизмах нейрогормональной регуляции. Как известно, регуляция ритма сердца осуществляется вегетативной, центральной нервной системой рядом гуморальных и рефлекторных воздействий. Парасимпатическая и симпатическая нервные системы находятся в определенном взаимодействии и под влиянием центральной нервной системы и ряда гуморальных и рефлекторных факторов.
Постоянное воздействие симпатических и парасимпатических влияний происходит на всех уровнях регуляции. Действительные отношения между двумя отделами вегетативной нервной системы сложны. Их сущность заключается в различной степени активности одного из отделов вегетативной системы при изменении активности другого. Это означает, что реальный ритм сердца может временами являться простой суммой симпатической и парасимпатической стимуляции, а временами – симпатическая или парасимпатическая стимуляция может сложно взаимодействовать с исходной парасимпатической или симпатической активностью.
Часто при достижении полезного приспособительного результата одновременно наблюдается снижение активности в одном отделе вегетативной нервной системы и возрастание в другом. Например, возбуждение барорецепторов при повышении АД приводит к снижению частоты и силы сердечных сокращений. Этот эффект обусловлен одновременным увеличением парасимпатической и снижением симпатической активности. Такой тип взаимодействия соответствует принципу «функциональной синергии».
В заключение следует подчеркнуть, что изложенные выше различные подходы к анализу ВСР не только не противоречат друг другу, но и являются взаимодополняющими. Текущая активность симпатического и парасимпатического отделов вегетативной нервной системы по существу является результатом системной реакции многоконтурной и многоуровневой системы регуляции.
3. ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ МЕТОДА И ПОКАЗАНИЯ К ЕГО ИСПОЛЬЗОВАНИЮ
 
Несмотря на почти 40-летний срок применения различных методов анализа ВСР в самых разнообразных областях прикладной физиологии и клинической медицины, сфера их использования продолжает расширяться с каждым годом. Принципиально важным является то, что анализ ВСР не является узкоспециализированным методом для решения конкретных диагностических задач. Можно перечислить лишь несколько примеров, где он применяется для уточнения диагноза определенных заболеваний. В частности, это диагностика автономной невропатии при диабете. В подавляющем большинстве случаев речь идет об оценке неспецифических реакций организма при воздействии различных факторов или при определенных заболеваниях. Исходя из представленных научно-теоретических положений можно условно выделить четыре направления применения методов анализа ВСР:
1. оценка функционального состояния организма и его изменений на основе определения параметров вегетативного баланса и нейрогуморальной регуляции;
2. оценка выраженности адаптационного ответа организма при воздействии различных стрессоров;
3. оценка состояния отдельных звеньев вегетативной регуляции кровообращения;
4. разработка прогностических заключений на основе оценки текущего функционального состояния организма, выраженности его адаптационых ответов и состояния отдельных звеньев регуляторного механизма.
Практическая реализация указанных направлений открывает безграничное поле деятельности, как для ученых, так и для практиков. Ниже предлагается ориентировочный и весьма неполный перечень областей использования методов анализа ВСР и показаний к их применению, составленный на основе анализа современных отечественных и зарубежных публикаций.
1. Оценка вегетативной регуляции ритма сердца у практически здоровых людей (исходный уровень вегетативной регуляции, вегетативная реактивность, вегетативное обеспечение деятельности);
2. Оценка вегетативной регуляции ритма сердца у пациентов с различными заболеваниями (изменения вегетативного баланса, степень преобладания одного из отделов вегетативной нервной системы) Получение дополнительной информации для диагностики некоторых форм заболеваний, например, автономной нейропатии при диабете;
3. Оценка функционального состояния регуляторных систем организма на основе интегрального подхода к системе кровообращения как к индикатору адаптационной деятельности всего организма;
4. Определение типа вегетативной регуляции (ваго-, нормо- или симпатотония);
5.  Прогноз риска внезапной смерти и фатальных аритмий при инфаркте миокарда и ИБС, у больных с желудочковыми нарушениями ритма, при хронической сердечной недостаточности, обусловленной артериальной гипертензией, кардиомиопатией;
6. Выделение групп риска по развитию угрожающей жизни повышенной стабильности сердечного ритма;
7. Использование в качестве контрольного метода при проведении различных функциональных проб;
8. Оценка эффективности лечебно-профилактических и оздоровительных мероприятий;
9. Оценка уровня стресса, степени напряжения регуляторных систем при экстремальных и субэкстремальных воздействиях на организм;
10. Оценка функционального состояния человека-оператора;
11. Использование в качестве метода оценки функциональных состояний при массовых профилактических (донозологических) обследованиях разных контингентов населения;
12. Прогнозирование функционального состояния (устойчивости организма) при профотборе и определение профпригодности;
13. Мониторинг ВРС в хирургии с целью объективизации выраженности операционного стресса и контроля адекватности анестезии, а также для выбора типа и дозировок анестезиологической защиты и для контроля в послеоперационном периоде;
14. Объективизация реакций вегетативной нервной системы при воздействии на организм электромагнитных полей, интоксикаций и других патогенных факторов;
15. Выбор оптимальной медикаментозной терапии с учетом фона вегетативной регуляции сердца. Контроль эффективности проводимой терапии, коррекция дозы препаратов;
16. Оценка и прогнозирование психических реакций по выраженности вегетативного фона;
17. Использование метода в неврологии для оценки состояния вегетативной нервной системы при различных заболеваниях;
18. Контроль функционального состояния организма в спорте;
19. Оценка вегетативной регуляции в процессе развития у детей и подростков. Применение в качестве контрольного метода в школьной медицине для социально-педагогических и медико-психологических исследований;
20. Контроль функционального состояния плода в акушерстве. Применение в неонатальном периоде развития организма.
Представленный перечень не является исчерпывающим. Он будет постепенно расширяться. Основным показанием к применению методов анализа ВСР является наличие вероятных изменений со стороны регуляторных систем организма, в частности изменений вегетативного баланса. Поскольку практически нет таких функциональных состояний или заболеваний, в которых бы не участвовали механизмы вегетативной регуляции, то сфера применения метода анализа ВСР поистине неисчерпаема. Это обусловлено тем, что метод на сегодняшний день, является, пожалуй, единственным доступным, неинвазивным, достаточно простым и относительно дешевым методом оценки вегетативной регуляции. Учитывая широкие перспективы развития метода, тем более важно обеспечить его стандартизацию и сравнимость данных, получаемых разными исследователями
 
4. ОСНОВНЫЕ МЕДИЦИНСКИЕ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
 
4.1. Требования к длительности регистрации сердечного ритма
 
Длительность регистрации СР зависит от целей исследования. Продолжительность записей может колебаться от нескольких минут до нескольких часов. Например, при массовых профилактических осмотрах или при предварительных поликлинических и клинических исследованиях применяют 5-минутную регистрацию ЭКГ. При функциональных пробах длительность регистрации может колебаться от 10-15 минут до 1,5 – 2 часов. Во время хирургических операций могут потребоваться контрольные исследования в течение 3-5 часов, наконец, в реанимационных отделениях или при исследовании сна длительность непрерывной регистрации может достигать 10-12 часов. В связи с этим предлагается выделять четыре типа исследований ВСР:
 
1. Кратковременные (оперативные или обзорные) записи (стандартная длительность – 5 минут);
 
2. Записи средней длительности (до 1-2-х часов);
 
3. Многочасовые записи (до 8-10 часов);
 
4. Суточные (24-х часовые и более длительные) записи.
 
Определенные задачи могут требовать более коротких отрезков времени записи (1-2 мин.) В настоящих медицинских рекомендациях многочасовые и суточные записи не рассматриваются. Что касается записей средней длительности, то в данном случае их использование предполагается в рамках проведения функциональных проб (см. ниже).
 
Независимо от длительности регистрации при анализе данных в качестве базовых выборок рекомендуется использовать 5-минутные сегменты записи. В отдельных случаях при работе с высокостационарными процессами (эмоциональный стресс, устойчивая фаза физической нагрузки) допустимо использовать и более короткие выборки. При необходимости оценки кардиоинтервалограмм при длительном наблюдении целесообразно использовать в каждом стационарном этапе стандартные 5-минутные сегменты записи и результаты анализа этих сегментов соответствующим образом суммировать. Анализ более продолжительных сегментов записи требует специальной разработки, так как при их оценке следует учитывать наличие в их составе периодических компонентов, отражающих состояние более высоких уровней регуляции, а также важно обращать особое внимание на устойчивость функционального состояния и наличие переходных процессов.
 
4.2. Методика исследования ВСР
 
Исследование ВСР может быть параллельным или специализированным. В первом случае оно проводится одновременно с регистрацией ЭКГ, ЭХО-КГ для целей диагностики или медицинского контроля или во время Холтеровского мониторирования. Во втором случае это целенаправленное изучение ВСР с использованием специализированных систем.
Целесообразно выделить четыре вида исследований:
а. оперативные исследования в условиях относительного покоя;
б. исследования при проведении функциональных тестов;
в. исследования в условиях обычной деятельности или при выполнении профессиональных нагрузок;
г. исследования в клинических условиях.
Каждый из этих видов исследований характеризуется определенными особенностями методики.
 
4.2.1. Оперативные исследования в условиях относительного покоя
 
Регистрируется ЭКГ-сигнал в одном из стандартных (лучше 2х-3х) или грудных отведениях. Продолжительность записи должна быть, как правило, не менее 5 минут. При наличии нарушений ритма лучше проводить запись не менее 10 минут. Анализ 2х–3х последовательных записей по 5 мин. подтверждает условия стабильности физиологического статуса. В экспериментальных и клинических исследованиях должна быть известна ЧСС для корректного сопоставления получаемых данных.
К исследованию ВСР приступают не ранее чем через 1.5-2 часа после еды, в тихой комнате, в которой поддерживается постоянная температура 20-22 С°. Перед исследованием обязательна отмена физиотерапевтических процедур и медикаментозного лечения. Либо эти факторы должны учитываться при оценке результатов исследования. Перед началом исследования необходим период адаптации к окружающим условиям в течение 5-10 минут.
Запись ЭКГ производится в положении лежа на спине, при спокойном дыхании. Обстановка во время исследования должна быть спокойной. Исследование у женщин желательно проводить в межменструальный период, так как гормональные изменения в организме отражаются на кардиоинтервалограмме. Необходимо устранить все помехи, приводящие к эмоциональному возбуждению, не разговаривать с исследуемым и посторонними, исключить телефонные звонки и появление в кабинете других лиц, включая медработников. В период исследования ВСР пациент должен дышать, не делая глубоких вдохов, не кашлять, не сглатывать слюну.
 
4.2.2. Исследования при проведении функциональных тестов
 
Функциональное тестирование является важной частью исследований ВСР. Основной целью при этом является оценка функциональных резервов механизмов вегетативной регуляции. В зависимости от вида функциональной нагрузки могут тестироваться различные звенья системы управления физиологическими функциями.
Чувствительность и реактивность вегетативной нервной системы, ее симпатического и парасимпатического отделов при воздействии того или иного тестирующего фактора могут служить диагностическими и прогностическими критериями.
Так, например, при диабетической нейропатии реакция парасимпатического звена регуляции на пробу с фиксированным темпом дыхания (6 дыханий в минуту) является одним из важнейших диагностических признаков. Ниже представлен перечень функциональных проб, наиболее часто применяемых при исследовании ВСР:
1). Активная и пассивная ортостатическая проба (при необходимости клиноортостатическая проба).
2). Проба с фиксированным темпом дыхания.
3). Проба Вальсальвы.
4). Пробы с максимальной задержкой дыхания на вдохе и выдохе.
5). Изометрическая нагрузочная проба.
6). Нагрузочные пробы на велоэргометре.
7). Фармакологические пробы (с b-блокаторами, атропином и другими препаратами).
8). Проба Ашнера.
9). Синокаротидная проба.
10). Психофизиологические пробы.
Представленный перечень функциональных проб является неполным. Каждая из указанных проб проводится по своей специальной методике. В зависимости от вида применяемой пробы длительность записи СР может колебаться от нескольких минут (при пробе с фиксированным темпом дыхания) до нескольких часов (при фармакологических пробах)
Необходимо отметить следующие особенности анализа ВСР при функциональных пробах:
·  Фоновая (исходная) запись должна проводится в условиях покоя (см. выше) в течение не менее 5 минут. Для сравнения с фоновой записью должны использоваться аналогичные по длительности записи, полученные на разных этапах функциональной пробы;
·  Переходный процесс при функциональных пробах должен анализироваться специальными методами (здесь эти методы не рассматриваются). При этом он должен быть выделен из записи визуально или автоматически с использованием соответствующих алгоритмов, учитывающих нестационарность и нелинейность процесса. Анализ переходных процессов может иметь самостоятельное диагностическое и прогностическое значение. Переходный процесс в зависимости от вида функциональных проб может занимать более короткое или более длительное время.
·  Оценку изменений показателей ВСР при функциональных пробах следует проводить с учетом данных, полученных другими методами исследования.
5. ОСНОВНЫЕ МЕТОДЫ АНАЛИЗА ВСР
 
5.1. Статистические методы
 
Эти методы применяются для непосредственной количественной оценки ВРС в исследуемый промежуток времени. При их использовании кардиоинтервалограмма рассматривается как совокупность последовательных временных промежутков – интервалов RR. Статистические характеристики динамического ряда кардиоинтервалов включают: SDNN, RMSSD, PNN5O, CV.
SDNN или СКО – суммарный показатель вариабельности величин интервалов RR за весь рассматриваемый период (NN – означает ряд нормальных интервалов «normal to normal» с исключением экстрасистол);
СКО – среднее квадратическое отклонение (выражается в мс);
SDNN – стандартное отклонение NN интервалов (аналог СКО);
SDANN – стандартное отклонение средних значений SDNN из 5 минутных сегментов для записей средней длительности, многочасовых или 24-х часовых записей. Подобным же образом могут обозначаться и стандартные отклонения средних значений других показателей;
RMSSD – квадратный корень из суммы квадратов разности величин последовательных пар интервалов NN (нормальных интервалов RR);
NN5O – количество пар последовательных интервалов NN, различающихся более, чем на 50 миллисекунд, полученное за весь период записи;
PNN5O (%) – процент NN50 от общего количества последовательных пар интервалов, различающихся более, чем на 50 миллисекунд, полученное за весь период записи;
CV – коэффициент вариации. Он удобен для практического использования, так как представляет собой нормированную оценку СКО;
CV= СКО/М*100, где М – среднее значение интервалов RR;
D, As, Ex – второй, третий и четвертый статистические моменты. D – это СКО в квадрате, отражает суммарную мощность всех периодических и непериодических колебаний. As – коэффициент аcсиметрии позволяет судить о стационарности исследуемого динамического ряда, о наличии и выраженности переходных процессов, в том числе трендов. Ex – коэффициент эксцессивности отражает скорость (крутизну) изменения случайных нестационарных компонентов динамического ряда и отражает наличие локальных нестационарностей.
 
5.2. Геометрические методы (вариационная пульсометрия)
 
Сущность вариационной пульсометрии заключается в изучении закона распределения кардиоинтервалов как случайных величин. При этом строится вариационная кривая (кривая распределения кардиоинтервалов – гистограмма) и определяются ее основные характеристики: Мо (Мода), Амо (амплитуда моды), MxDMn (вариационный размах). Мода – это наиболее часто встречающееся в данном динамическом ряде значение кардиоинтервала. При нормальном распределении и высокой стационарности исследуемого процесса Мо мало отличается от математического ожидания (М). Амо – (амплитуда моды) – это число кардиоинтервалов, соответствующих значению моды, в % к объему выборки. Вариационный размах (MxDMn) отражает степень вариативности значений кардиоинтервалов в исследуемом динамическом ряду. Он вычисляется по разности максимального (Mx) и минимального (Mn) значений кардиоинтервалов и поэтому при аритмиях или артефактах может быть искажен.
При построении гистограмм (или вариационных пульсограмм) первостепенное значение имеет выбор способа группировки данных. В многолетней практике сложился традиционный подход к группировке кардиоинтервалов в диапазоне от 400 до 1300 мс. с интервалом в 50 мс. Таким образом, выделяются 20 фиксированных диапазонов длительностей кардиоинтервалов, что позволяет сравнивать вариационные пульсограммы, полученные разными исследователями на разных группах исследований. При этом объем выборки, в которой производится группировка и построение вариационной пульсограммы, также стандартный – 5 минут. Другой способ построения вариационных пульсограмм заключается в том, чтобы вначале определить модальное значение кардиоинтервала, а затем, используя диапазоны по 50 мс, формировать гистограмму в обе стороны от моды. Вариационная пульсограмма может быть также представлена «гладким» графиком плотности распределения ( см. рис. 3).


Рис. 3. Образцы вариационных пульсограмм при тахикардии и нормокардии.

По данным вариационной пульсометрии вычисляется широко распространенный в России индекс напряжения регуляторных систем или стресс-индекс.

Ин = АМо/2Mо* MxDMn.

Западноевропейские и американские исследователи используют апроксимацию кривой распределения кардиоинтервалов треугольником и вычисляют так называемый триангулярный индекс - интеграл плотности распределения (общее количество кардиоинтервалов) отнесенный к максимуму плотности распределения (АМо). Этот показатель обозначается как TINN (triangular interpolation of NN intervals).

Кроме того, используется построение гистограмм по разностным значениям соседних кардиоинтервалов с аппроксимацией их экспоненциальной кривой и вычислением логарифмического коэффициента, а также другие способы аппроксимации.
 

5.3. Автокорреляционный анализ
 
Вычисление и построение автокорреляционной функции динамического ряда кардиоинтервалов направлено на изучение внутренней структуры этого ряда как случайного процесса. Автокорреляционная функция представляет собой график динамики коэффициентов корреляции, получаемых при последовательном смещении анализируемого динамического ряда на одно число по отношению к своему собственному ряду.
После первого сдвига на одно значение коэффициент корреляции тем меньше единицы, чем более выражены дыхательные волны (см. рис. 4 вверху). Если в исследуемой выборке доминируют медленноволновые компоненты, то коэффициент корреляции после первого сдвига будет лишь незначительно ниже единицы (см. рис. 4 в середине и внизу). Последующие сдвиги ведут к постепенному уменьшению корреляционных коэффициентов. Автокоррелограмма позволяет судить о скрытой периодичности СР.

Рис. 4. Образцы автокоррелограмм с выраженными дыхательными волнами (вверху), с преобладанием медленных (в середине) и очень медленных ( внизу) волн.

В качестве количественных показателей автокоррелограммы рекомендуются С1 – значение коэффициента корреляции после первого сдвига и С0 – число сдвигов в результате которого значение коэффициента корреляции становиться отрицательным.
 

5.4. Корреляционная ритмография - скатерография
 
Сущность метода корреляционной ритмографии заключается в графическом отображении последовательных пар кардиоинтервалов (предыдущего и последующего) в двухмерной координатной плоскости. При этом по оси абсцисс откладывается величина R-Rn, а по оси ординат – величина R-Rn+1. График и область точек, полученных таким образом (пятна Пуанкаре или Лоренца), называется корреляционной ритмограммой или скаттерограммой (scatter-рассеивание). Этот способ оценки ВСР относится к методам нелинейного анализа и является особенно полезным для случаев, когда на фоне монотонности ритма встречаются редкие и внезапные нарушения (эктопические сокращения и (или) «выпадения» отдельных сердечных сокращений).
При построении скаттерограммы образуется совокупность точек, центр которых располагается на биссектрисе. Расстояние от центра до начала осей координат соответствует наиболее ожидаемой длительности сердечного цикла (Мо). Величина отклонения точки от биссектрисы влево показывает, насколько данный сердечный цикл короче предыдущего, вправо от биссектрисы – насколько он длиннее предыдущего. Предлагается вычислять следующие показатели скаттерограммы:
1. Длина основного (без экстрасистол и артефактов) «облака» (длинная ось эллипса – L) соответствует вариационному размаху. По физиологическому смыслу этот показатель не отличается от SDNN, то есть отражает суммарный эффект регуляции ВСР, но указывает на максимальную амплитуду колебаний длительности интервалов R-R;
2. Ширина скаттерограммы (перпендикуляр к длинной оси, проведенный через ее середину – w);
3. Площадь скаттерограммы вычисляется по формуле площади эллипса:
S = (pЧLЧw)/4.
Нормальная форма скаттерограммы представляет собой эллипс, вытянутый вдоль биссектрисы. Именно такое расположение эллипса означает, что к дыхательной прибавлена некоторая величина недыхательной аритмии. Форма скаттерограммы в виде круга означает отсутствие недыхательных компонентов аритмии. Узкий овал (см. рис. 5) соответствует преобладанию недыхательных компонентов в общей вариабельности ритма, которая определяется длиной «облака» (скаттерограммы).
 

Рис. 5. Образцы корреляционных ритмограмм (КРГ) - скатерограмм, вверху - нормальная КПГ, внизу - у пациента с аритмией.

 

6. ВОСПРОИЗВОДИМОСТЬ И СРАВНИМОСТЬ ДАННЫХ
 
Постоянно действующие регуляторные механизмы обеспечивают адекватные адаптивные ответы организма на непрерывные изменения условий окружающей среды. Это означает, что функциональное состояние различных звеньев регуляции постоянно изменяется и при повторных исследованиях ВСР невозможно получить полностью идентичные результаты.
Поэтому воспроизводимость данных исследования ВСР не может быть 100%. Высокая воспроизводимость означает лишь качественное, но не количественное соответствие двух сравниваемых записей, полученных у одного и того же человека даже через сравнительно небольшой промежуток времени. При обсуждении вопросов воспроизводимости результатов анализа ВСР следует иметь в виду высокую чувствительность вегетативной нервной системы к внешним и внутренним воздействиям, типологические особенности обследуемого лица и его состояние здоровья.
В ряде случаев (начальные стадии некоторых заболеваний, неустойчивость вегетативной регуляции) вообще нельзя ожидать высокой воспроизводимости. Следует также учитывать и суточные изменения вегетативной регуляции. Сравнимость записей и результатов анализа ВСР означает возможность сопоставления данных, получаемых в различных клиниках и учреждениях с помощью разных типов аппаратуры и разных программных средств. Без возможности такого сопоставления невозможно дальнейшее развитие методов анализа ВСР. Речь идет о сравнимости основных (ключевых) показателей статистического и спектрального анализа. Клинико-физиологическая трактовка этих показателей и формирование на их основе новых алгоритмов оценки может и должно быть предметом дальнейших научных исследований. Однако, если ключевые показатели ВСР будут существенно различаться в зависимости от типа применяемой аппаратуры и программных средств, то нельзя говорить ни о каком прогрессе в области анализа ВСР.
Настоящие рекомендации по применению различных электрокардиографических систем для анализа ВСР предусматривают использование специальной системы тестирования, которая должна включать набор контрольных файлов, специальную тестирующую программу и специальный банк данных стандартизованных ЭКГ. Все аппаратно-программные комплексы, производимые в России, должны проходить процедуру тестирования на соответствие принятым стандартам анализа ВСР.
В качестве стандартной системы тестирования в будущем рекомендуется разрабатываемый Московским Институтом Электронной Техники (г. Зеленоград) комплекс «HRV-test», который включает в себя набор реальных и генерируемых ЭКГ-сигналов, а также результаты их обработки стандартной программой анализа ВСР.
Рассматриваются три уровня тестирования:
Тестирование системы, выполняющей функции распознавания R- зубцов ЭКГ, измерения длительности интервалов R-R, формирования нормализованного ряда кардиоинтервалов и расчета ключевых (стандартных) показателей ВСР.
Тестирование системы выполняющей только функции формирования нормализованного ряда кардиоинтервалов и расчета ключевых (стандартных) показателей ВСР.
Тестирование системы выполняющей только функции расчета ключевых (стандартных) показателей ВСР.
Подобное выделение разных уровней тестирования необходимо для того, чтобы можно было стандартизировать не только полные аппаратно-программные комплексы, но и специализированные программные продукты, предназначенные для анализа ВСР, как в составе серийно выпускаемых приборов, так и автономно работающие с базами данных или отдельно собранными файлами R-R интервалов.
 
7. ОЦЕНКА РЕЗУЛЬТАТОВ АНАЛИЗА ВСР
 
Для исследователей и клиницистов, использующих метод анализа ВСР ведущее значение имеет физиологическая и клиническая интерпретация получаемых результатов. Однако в настоящее время в отношении интерпретации результатов анализа ВСР нет единодушного мнения. Вместе с тем для основных показателей ВСР уже сложились определенные клинико-физиологические оценки, которые более или менее однозначно трактуются в большинстве публикаций. Для некоторых показателей существуют оригинальные, но все еще спорные трактовки, которые нуждаются в более тщательном обосновании.
В данном разделе представлены материалы по оценке результатов анализа ВСР, перечислены только основные, наиболее часто используемые в России, показатели и дана их клинико-физиологическая интерпретация, основанная на традиционных представлениях о вегетативной регуляции сердца, участии в ней симпатического и парасимпатического отделов, подкоркового сердечнососудистого центра и более высоких уровней управления физиологическими функциями. Специальное внимание уделяется комплексной оценке функциональных состояний организма по данным ПАРС (показателя активности регуляторных систем).
Важное значение при оценке результатов исследований имеет сравнение полученных данных с показателями нормы. Представление о норме как о некоторой статистической совокупности, значений, полученных при обследовании референтной группы специально отобранных здоровых людей, требует уточнения применительно к анализу ВСР. Поскольку речь идет не об оценке относительно стабильных параметров гомеостаза , а о весьма изменчивых показателях вегетативной регуляции, в данном случае более приемлемым является представление о норме как о функциональном оптимуме (Баевский P.M., 1979).
Здесь следует иметь в виду, что индивидуальный оптимум организма не всегда совпадает со среднестатистической нормой, поскольку однотипные адаптационные реакции протекают по разному в соответствии с условиями, в которых находится человек, и в зависимости от его индивидуальных функциональных резервов. В космической медицине разработано представление о физиологической норме, которая указывает на сохранение достаточного уровня функциональных возможностей организма (Григорьев А.И., Баевский P.M., 2001). При этом гомеостаз основных систем организма обеспечивается при минимальном напряжении регуляторных механизмов. Соответственно значения большинства показателей ВСР не должны превышать определенных порогов, установленных для конкретной возрастно-половой, профессиональной, региональной группы. В наибольшей мере такое условие реализуется при комплексной оценке результатов анализа ВСР (см. ниже). Существует также представление о клинической норме, которая характеризует значения показателей у лиц без проявления признаков заболеваний. Однако, как известно, нозологический подход основан на оценке изменений главным образом на структурном, метаболическом или энерго- метаболическом уровнях организации живой системы и в минимальной степени учитывает состояние регулятор-ных систем. Таким образом, проблема нормы применительно к оценке ВСР требуют дальнейшей углубленной разработки.
7.1. Показатели статистического анализа (временной анализ)
 
Среднее квадратичное отклонение (СКО, SD). Вычисление СКО является наиболее простой процедурой статистического анализа ВСР. Значения СКО выражаются в миллисекундах (мс). Нормальные значения СКО находятся в пределах 40—80 мс. Однако эти значения имеют возрастно-половые особенности, которые должны учитываться при оценке результатов исследования.
Рост или уменьшение СКО могут быть связаны как с автономным контуром регуляции, так и с центральным (как с симпатическими, так и с парасимпатическими влияниями на ритм сердца). При анализе коротких записей, как правило, рост СКО указывает на усиление автономной регуляции, то есть рост влияния дыхания на ритм сердца, что чаще всего наблюдается во сне.
Уменьшение СКО связано с усилением симпатической регуляции, которая подавляет активность автономного контура. Резкое снижение СКО обусловлено значительным напряжением регуляторных систем, когда в процесс регуляции включаются высшие уровни управления, что ведет к почти полному подавлению активности автономного контура. Информацию по физиологическому смыслу аналогичную СКО можно получить по показателю суммарной мощности спектра - ТР. Этот показатель отличается тем, что характеризует только периодические процессы в ритме сердца и не содержит так называемой фрактальной части процесса, то есть, нелинейных и непериодических компонентов.
 
RMSSD - показатель активности парасимпатического звена вегетативной регуляции. Этот показатель вычисляется по динамическому ряду разностей значений последовательных пар кардиоинтервалов и не содержит медленноволновых составляющих СР. Он отражает активность автономного контура регуляции. Чем выше значение RMSSD, тем активнее звено парасимпатической регуляции. В норме значения этого показателя находятся в пределах 20-50 мс. Аналогичную информацию можно получить по показателю pNN5O, который выражает в % число разностных значений больше чем 50 мс.
Индекс напряжения регуляторных систем (ИН) характеризует активность механизмов симпатической регуляции, состояние центрального контура регуляции. Этот показатель вычисляется на основании анализа графика распределения кардиоинтервалов-вариационной пуль-сограммы. Активация центрального контура, усиление симпатической регуляции во время психических или физических нагрузок проявляется стабилизацией ритма, уменьшением разброса длительностей кардиоинтервалов, увеличением количества однотипных по длительности интервалов (рост АМо).Форма гистограмм изменяется, происходит их сужение с одновременным ростом высоты.
Количественно это может быть выражено отношением высоты гистограммы к ее ширине (см. выше). Этот показатель получил название индекса напряжения регуляторных систем (ИН). В норме ИН колеблется в пределах 80-150 условных единиц. Этот показатель чрезвычайно чувствителен к усилению тонуса симпатической нервной системы. Небольшая нагрузка (физическая или эмоциональная) увеличивает ИН в 1,5-2 раза. При значительных нагрузках он растет в 5-10 раз. У больных с постоянным напряжением регуляторных систем ИН в покое равен 400-600 усл. ед. У больных с приступами стенокардии и инфарктом миокарда ИН в покое достигает 1000-1500 единиц.
 
7.2. Показатели спектрального анализа (частотный анализ)
 
Мощность высокочастотной составляющей спектра (дыхательные волны). Активность симпатического отдела вегетативной нервной системы, как одного из компонентов вегетативного баланса, можно оценить по степени торможения активности автономного контура регуляции, за который ответственен парасимпатический отдел.
Вагусная активность является основной составляющей ВЧ компонента. Это хорошо отражается показателем мощности дыхательных волн СР в абсолютных цифрах и в виде относительной величины (в % от суммарной мощности спектра).
Обычно дыхательная составляющая (HF) составляет 15-25% суммарной мощности спектра. Снижение этой доли до 8-10% указывает на смещение вегетативного баланса в сторону преобладания симпатического отдела. Если же величина HF падает ниже 2-3% то можно говорить о резком преобладании симпатической активности. В этом случае существенно уменьшаются также показатели RMSSD и pNN50.
Мощность низкочастотной составляющей спектра (медленные волны 1-го порядка или вазомоторные волны). Этот показатель (LF) характеризует состояние симпатического отдела вегетативной нервной системы, в частности, системы регуляции сосудистого тонуса. В норме чувствительные рецепторы синокаротидной зоны воспринимают изменения величины артериального давления и афферентная нервная импульсация поступает в сосу-додвигательный (вазомоторный) центр продолговатого мозга. Здесь осуществляется афферентный синтез (обработка и анализ поступающей информации) и в сосудистую систему поступают сигналы управления (эфферентная нервная импульсация. Этот процесс контроля сосудистого тонуса с обратной связью на гладкомышечные волокна сосудов осуществляется вазомоторным центром постоянно. Время, необходимое вазомоторному центру на операции приема, обработки и передачи информации колеблется от 7 до 20 сек.; обычно оно равно 10 -12 сек. Поэтому в ритме сердца можно обнаружить волны с частотой близкой к 0,1 Гц (10 с), которые получили название вазомоторных. Впервые эти волны наблюдали Майер с соавторами (1931) и поэтому они иногда называются волнами Майера. Мощность медленных волн 1-го порядка определяет активность вазомоторного центра.
Переход из положения «лежа» в положение «стоя» ведет к значительному увеличению мощности в этом диапазоне колебаний СР. Активность вазомоторного центра падает с возрастом и у лиц пожилого возраста этот эффект практически отсутствует (см. рис. 7). Вместо медленных волн 1-го порядка, увеличивается мощность медленных волн 2-го порядка. Это означает, что процесс регуляции АД осуществляется при участии неспецифических механизмов путем активации симпатического отдела вегетативной нервной системы. Обычно в норме процентная доля вазомоторных волн в положении «лежа» составляет от 15 до 35-40%.


рис .7. кардиоинтервалограмма при активной ортостатической пробе у лиц молодого (вверху) пожилого (внизу) возраста 

ледует упомянуть также о показателе доминирующей частоты в диапазоне вазомоторных волн. Обычно он находится в пределах 10-12 сек. Его увеличение до 13-14 сек может указывать на снижение активности вазомоторного центра или на замедление барорефлекторной регуляции.
 Мощность «очень» низкочастотной составляющей спектра (медленные волны 2-го порядка). Спектральная составляющая сердечного ритма в диапазоне 0,05-0,015 Гц (20-70 с), по мнению многих зарубежных авторов, характеризует активность симпатического отдела вегетативной нервной системы. Однако в данном случае речь идет о более сложных влияниях со стороны надсегментарного уровня регуляции, поскольку амплитуда VLF тесно связана с психоэмоциональным напряжением и функциональным состоянием коры головного мозга. Показано, что VLF отражает церебральные эрготропные влияния на нижележащие уровни и позволяет судить о функциональном состоянии мозга при психогенной и органической патологии мозга (Н.Б.Хаспекова, 1996).

Целенаправленные исследования А.Н.Ф-лейшмана (1999) продемонстрировали важное значение анализа ВСР в VLF-диапазоне. В предложенной им классификации спектральных компонентов ВСР учитывается соотношение амплитуд HF, LF и VLF и рассматривается 6 классов спектрограмм (см. рис. 8). А.Н.Флейшма-нсм также показано, что мощность VLF-коле-баний ВСР является чувствительным индикатором управления метаболическими процессами и хорошо отражает энергодефицитные со стояния. Поскольку этот подход не имеет зарубежных аналогов целесообразно представить его более подробное описание.

На рис. 9 представлена схема оценки энергодефицитных состояний с использованием серии функциональных проб (счет в уме и гипервентиляция). Высокий по сравнению с нормой уровень VLF можно трактовать как гиперадаптивное состояние, сниженный уровень VLF указывает на энергодефицитное состояние. Мобилизация энергетических и метаболических резервов при функциональных воздействиях может отражаться изменениями мощности спектра в VLF-диапазоне. При увеличении мощности VLF в ответ на нагрузку можно говорить о гиперадаптивной реакции, при ее снижении о постнагрузочном энергодефиците. Несмотря на условный и во многом еще спорный характер подобной интерпретации изменений VLF она может быть полезной при исследованиях как здоровых людей, так и пациентов с различными состояниями, связанными с нарушением метаболических и энергетических процессов в организме.

Таким образом, VLF характеризует влияние высших вегетативных центров на сердечно-сосудистый подкорковый центр, отражает состояниенейро-гуморального и метаболического уровней регуляции. VLF может использоваться как надежный маркер степени связи автономных (сегментарных) уровней регуляции кровообращения с над-сегментарными, в том числе с гипофизарно-гипоталамическим и корковым уровнем. В норме мощность VLF составляет 15-30% суммарной мощности спектра.
 
7.3. Комплексная оценка функционального состояния
 
Комплексная оценка вариабельности сердечного ритма направлена на диагностику функциональных состояний. Анализ ВСР является методом неспецифической (ненозологической) диагностики. Однако, оценка совокупности его показателей и их динамики при повторных обследованиях позволяет направить диагностический поиск в должном направлении и помогает уточнению функционального и прогностического компонентов клинического диагноза.Изменения вегетативного баланса в виде активации симпатического звена рассматриваются как неспецифический компонент адаптационной реакции в ответ на различные стрессорные воздействия.
Одним из методов оценки таких реакций является вычисление показателя активности регуляторных систем (ПАРС). Он вычисляется в баллах по специальному алгоритму, учитывающему статистические показатели, показатели гистограммы и данные спектрального анализа кардиоинтервалов. ПАРС позволяет дифференцировать различные степени напряжения регуляторных систем и оценивать адаптационные возможности организма (P.M. Баевский, 1979). Вычисление ПАРС осуществляется по алгоритму, учитывающему следующие пять критериев: 
А. Суммарный эффект регуляции по показателям частоты пульса (ЧП).
Б. Суммарную активность регуляторных механизмов по среднему квадратичному отклонению - SD (или по суммарной мощности спектра - ТР). В. Вегетативный баланс по комплексу показателей: Ин, RMSSD,HF,IC.
Г. Активность вазомоторного центра, регулирующего сосудистый тонус, по мощности спектра медленных волн 1-го порядка (LF).
Д. Активность сердечно-сосудистого подкоркового нервного центра или надсегментарных уровней регуляции по мощности спектра медленных волн 2-го порядка (VLF).
Значения ПАРС выражаются в баллах от 1 до 10. На основании анализа значений ПАРС могут быть диагностированы следующие функциональные состояния:
Состояние оптимального (рабочего) напряжения регуляторных систем, необходимое для поддержания активного равновесия организма со средой (норма ПАРС = 1-2).
Состояние умеренного напряжения регуляторных систем, когда для адаптации к условиям окружающей среды организму требуются дополнительные функциональные резервы. Такие состояния возникают в процессе адаптации к трудовой деятельности, при эмоциональ ном стрессе или при воздействии неблагоприятных экологических факторов (ПАРС = 3-4).
Состояние выраженного напряжения регуляторных систем, которое связано с активной мобилизацией защитных механизмов, в том числе повышением активности симпатико-адреналовой системы и системы гипофиз-надпочечники (ПАРС = 4-6).
Состояние перенапряжения регуляторных систем, для которого характерна недостаточность защитно-приспособительных механиз мов, их неспособность обеспечить адекватную реакцию организма на воздействие фак торов окружающей среды. Здесь избыточная активация регуляторных систем уже не подкрепляется соответствующими функциональ ными резервами (ПАРС = 6-7).
Состояние истощения (астенизации) регуляторных систем, при котором активность управляющих механизмов снижается (недостаточность механизмов регуляции) и появляются характерные признаки патологии. Здесь спе цифические изменения отчетливо преобладают над неспецифическими (ПАРС = 7-8).
Состояние «полома» адаптационных механизмов (срыв адаптации), когда доминируют специфические патологические отклонения и способность адаптационных механизмов к саморегуляции частично или полнос тью нарушена (ПАРС = 8-10).
При оценке значений ПАРС условно выделяются три зоны функциональных состояний для наглядности представленных в виде «светофора»: ЗЕЛЕНЫЙ - означает, что все в порядке, не требуется никаких специальных мероприятий по профилактике и лечению. ЖЕЛТЫЙ - указывает на необходимость проведения оздоровительных и профилактических мероприятий. Наконец, КРАСНЫЙ показывает, что требуется вначале диагностика, а затем и лечение возможных заболеваний.
Выделение зеленой, желтой и красной зон здоровья позволяет характеризовать функциональное состояние человека с точки зрения риска развития болезни. Для каждой ступени «лестницы состояний» предусмотрен «диагноз» функционального состояния по степени выраженности напряжения регуляторных систем. Кроме того, имеется возможность отнесения обследуемого к одному из 4-х функциональных состояний по принятой в донозологической диагностике классификации (Р.М.Ба-евский, А.П.Берсенева, 1997).
Состояние нормы или состояние удовлетворительной адаптации (ПАРС = 1-3).
Состояние функционального напряжения (ПАРС = 4-5).
Состояние перенапряжения или состояние неудовлетворительной адаптации (ПАРС = 6-7).
Состояние истощения регуляторных систем или срыв адаптации (ПАРС = 8-10).
Разработанный ИВНМТ «Рамена» комплекс «Ва-рикард» позволяет не только вычислять ПАРС и оценивать функциональное состояние, но и формирует индивидуальные заключения (см. рис. 10). Необходимо отметить, что ПАРС не имеет аналогов в зарубежных исследованиях. Недостатком ПАРС является то, что он позволяет получать лишь дискретные оценки функциональных состояний, что недостаточно при динамическом контроле. Для обеспечения непрерывной шкалы оценок могут быть использованы математические модели как количественные зависимости между набором числовых признаков (значений показателей ВСР) и функциональными состояниями организма (Баевский P.M., Семенов Ю.Н., Черникова А.Г., 2000).


7.4. Оценка результатов анализа ВСР при проведении функциональных проб
 
Специального внимания требует оценка результатов анализа ВСР при проведении функциональных нагрузочных проб. Здесь необходима разработка отдельных медицинских инструкций по каждой функциональной пробе. Наиболее полная информация об анализе ВСР при проведении различных функциональных проб содержится в монографии В.М. Михайлова (2000).
Некоторые общие рекомендации по интерпретации показателей ВСР при функциональных пробах состоят в следующем:
Важнейшее значение имеет оценка функционально го состояния организма (вегетативный баланс, степень напряжения регуляторных систем и т.д.) в исходном периоде (фон) до начала функционального воздействия. Интерпретация данных на разных этапах функциональной пробы должна проводиться, прежде всего, путем сравнения с исходным состоянием.
Во всех функциональных пробах существует переходный процесс между исходным состоянием и новым фун кциональным состоянием, формирующимся в процессе проведения пробы. Этот переходный процесс имеет различный характер и различную длительность при разных функциональных пробах. Выделение переходного процесса из общей записи и его оценка специальными методами является одной из важных проблем функционального тестирования. Нередко именно в переходном процессе содержится наиболее ценная информация о состоянии регуляторных механизмов. Методы анализа переходных процессов в данных методических рекомендациях не рассматриваются.
Под влиянием функциональных воздействий формируется новое функциональное состояние, которое не является устойчивым. Это особенно необходимо учитывать, анализируя динамику показателей ВСР, отража ющих тонкие взаимосвязи между различными звеньями регуляторного механизма. Поэтому целесообразно выделять для оценки различные этапы функциональной пробы.
Следует различать, по крайней мере, два этапа функциональной пробы: этап (или период) непосредственно го воздействия на организм соответствующего фактора и этап (или период) восстановления. Между окончанием воздействия и началом восстановления также имеется переходный процесс, которые требует распознавания, выделения и специальной оценки.
При оценке показателей ВСР на разных этапах функциональной пробы рекомендуется оценивать не только их средние значения, но и динамику изменений, и синхронизацию этих изменений.

8. ЗАКЛЮЧЕНИЕ. 

 
На современном этапе практического использования методов анализа ВСР в прикладной физиологии и клинической медицине представленные выше подходы к физиологической и клинической интерпретации данных позволяют эффективно решать многие задачи диагностического и прогностического профиля, оценки функциональных состояний, контроля эффективности лечебно-профилактических воздействий и т.п. Однако, возможности этой методологии далеко не исчерпаны и ее развитие продолжается. Ниже дается краткий перечень некоторых направлений дальнейшего развития методов анализа ВСР, которые разрабатываются главным образом в России. К их числу относятся:
Изучение медленных волн 2-го порядка (VLF) и ультрамедленноволновых компонентов спектра сердечного ритма (ULF) - колебаний на частотах ниже 0,01 Гц (100 с), включая минутные и часовые волны (ультрадианные ритмы).
Развитие методологии вариационной пульсометрии в том числе дифференциальной хронокардиографии и новых подходов к статистическому анализу вариабельности сердечного ритма

9. ЛИТЕРАТУРА.

 
Анохин П.К. Принципиальные вопросы общей тео рии функциональных систем. Принципы системной орга низации функций. М., Наука, 1973, С.5-61.
Баевский P.M. К проблеме прогнозирования функцио нального состояния человека в условиях длительного кос мического полета. Физиол. Журн. СССР,1972,6, с.819-827.
Баевский P.M. Кибернетический анализ процессов уп- раления сердечным ритмом. Актуальные проблемы физиологии и патологии кровообращения. М., Медици- на.197б. С. 161-175.
Баевский P.M., Кириллов О.И., Клецкин С.З. Матема тический анализ изменений сердечного ритма при стрес са. М, Наука, 1984. С. 220
Баевский P.M., Берсенева А.П. Оценка адаптационных возможностей организма и риск развития заболеваний. М., Медицина. 1997. С. 265.
Баевский P.M. Прогнозирование состояний на грани нормы и патологии. М., Медицина, 1979,205 с.
Баевский P.M., Семенов Ю.Н., Черникова А.Г. Ана лиз вариабельности сердечного ритма с помощью ком плекса "Варикард" и проблема распознавания функци ональных состояний. Хронобиологические аспекты ар териальной гипертензии в практике врачебно-летной эк спертизы (Разсолов Н.А., Колесниченко О.Ю.), М.. 2000.С. 167-178
 

Комментарии