информационный портал по вопросам биомедицинской инженерии

Сейчас на сайте 0 пользователей и 0 гостей.

Вход в систему

Недавно присоединились

  • Сергей Посохов
  • Roman Polostnikov
  • Абдусаламов Магом...
  • Комиссаров Мэлор ...
  • Олег Матвеевич
аватар: АЛЬ-факих али мохаммед
 
                                           Содержание 
Введение
1. Реоэнцефалография 
1.1.Теоретические основы реоэнцефалографии .особенности кровообращения в головном мозгу 
1.2. Механизмы формирования реоэнцефалограммы 
1.3. Аспекты применения реоэнцефалографии для оценки мозгового кровообращения 
1.4. Информационная направленность реоэнцефалографии 
1.5.Объективные показатели реоэнцефалограммы  
1.6. Выбор способа снятия реоэнцефалограммы и применяемых при этом отведений 
2 . Заключение 
3.  Источники  

Введение 

За последние несколько десятилетий наблюдалось интенсивное развитие медицинской науки и практики. B этом прогрессе немалую роль сыграла техника. K настоящему времени на грани медицины, c одной стороны, и электроники  c другой, сложилась новая отрасль – медицинская электронная техника. Процесс подготовки творчески мыслящего инженера, связанного с областью биомедицинского электронного приборостроения, невозможен без воспитания и развития у него в студенческие годы интереса к самостоятельной исследовательской деятельности. Именно поэтому в последние годы во всех руководящих документах высших учебных заведений ей уделяется особое внимание.На сегодняшний день невозможно представить медицину без применения электронной медицинской диагностической аппаратуры. Одной из основных задач медицинского контроля за состоянием человека является диагностика состояния здоровья с целью выявления патологических процессов, наличия инфекций в организме, предрасположенности к патологиям и прогнозирования их развития. В помощь студентам предлагается данное учебное пособие.
Основное внимание в пособии уделено области диагностических методик, базирующихся на уникальных медицинских приборах, нестандартном лабораторном и диагностическом оборудовании. В нём анализируются методики рео- иэлектроэнцефалографии, механизмы их формирования; основные принципы метода вектокардиографии, применение метода линейного синтеза стандартных отведений из ортогональных отведений векторкардиографии. Рассмотрены основные приборы для функциональной диагностики – электрокардиографы, элекрокардиомониторы, электроэнцефалографы,реографы, автоматизированные системы оперативно го врачебного контроля. Учебное пособие органически дополняет лекционный материал и даёт возможность студенту проявить индивидуальность в подходах к самостоятельному решению поставленных задач. Учебное пособие предназначено для студентов, обучающихся по специальности «Инженерное дело в медикобиологической практике» и занимающихся изучением и разработкой медицинского диагностического оборудования.
1. Реоэнцефалография 
1.1.Теоретические основы реоэнцефалографии .особенности кровообращения в головном мозгу 

Развитию и техническому обоснованию реографии способствовали многочисленные работы, посвящённые исследованию электропроводности, электрического сопротивления различных органов и частей тела, а также влиянию на организм постоянного и переменного тока разной частоты.  Развитие метода реографии неразрывно связано с установлением зависимости между работой сердца и колебаниями сопротивления и ёмкости в тканях. Рядом учёных было установлено, что наблюдаемые изменения импеданса (электропроводности) являются результатом синхронных с пульсом колебаний объёма исследуемых областей тела, отражающих артериовенозную разницу кровенаполнения. Наиболее тщательные и систематические исследования по теоретическому обоснованию и практическому применению регистрации колебаний электрического сопротивления для объективной оценки состояния кровообращения в различных частях тела . Изучая влияние различных частот (1 – 300 кГц) переменного  тока на электрическое сопротивление тканей, автор установил, что наилучшие результаты (электроплетизмограммы, адекватно и полнее отражающие состояние гемодинамики) получаются при использовании переменного тока частотой около 100 кГц.  Кровообращение головного мозга характеризуется специфическими особенностями, обусловленными его сложной  структурной и функциональной организацией. Объём крови, протекающей через головной мозг человека, составляет, как правило, значительную часть (у взрослых примерно 15 %) общего объёма крови. Из общего количества кислорода, поступающего в организм с вдыхаемым воздухом, головной мозг потребляет 20 – 25 %. Кроме массы циркулирующей крови важным фактором, определяющим интенсивность кровоснабжения головного мозга, является скорость кровотока. Известно, что скорость артериального кровотока в мозгу значительно больше, чем в других органах. Такое интенсивное кровоснабжение обеспечивается большой и сложной сетью мозговых сосудов с разнообразной ангиоархитектоникой.  Кровоснабжение мозга осуществляется двумя парами магистральных артерий внутренними сонными и позвоночными, образующими на основании мозга виллизиев круг. Виллизиев круг является мощным коллектором, обеспечивающим распределение крови в головном мозгу. Вследствие равенства давления в правых и левых, а также в передних и задних половинах виллизиева круга в определённых местах передней и задних соединительных артерий образуются «мёртвые пункты», в которых движения крови нет. Следовательно, кровь из разных сосудов в пределах виллизиева круга в физиологических условиях не смешивается, а попадает в зону васкуляризации каждой отдельной артерии.  Задняя мозговая циркуляция поддерживается кровотоком из позвоночных артерий, причем после их слияния в основную артерию кровь из правой позвоночной артерии течёт строго по правой половине, а из левой позвоночной  по её

левой половине. Возможно, равномерному распределению крови по гомолатеральным сторонам способствуют и сосудистые пучки, отходящие от дорсальных сторон позвоночных артерий у места их слияния.  Однако даже при незначительном уменьшении давления в каком-нибудь из магистральных сосудов (прижатие артерий на шее при резких движениях головы или при сдавлении шеи) сейчас же происходит переток крови в направлении  снизившегося давления. Из сказанного видно, что динамика кровоснабжения мозга даже в физиологических условиях
зависит от состояния коллатерального кровообращения. Виллизиев круг является наиболее мощной и постоянно действующей системой анастомозов, обеспечивающей коллатеральное кровообращение в обоих полушариях. Кроме того, существуют ещё две системы анастомотических связей, не функционирующие в нормальных условиях, но приобретающие 
важное значение в условиях сосудистой патологии. Это связи внутренней сонной и позвоночной артерий с наружной  сонной артерией и анастомозы трёх мозговых артерий между собой на поверхности мозга. Общая масса внутричерепного содержимого (мозговое вещество, артериальная кровь, венозная кровь и ликвор) относительно постоянна. Приток артериальной крови  важный фактор для поддержания внутричерепного давления. изменение кровенаполнения мозга сказывается на давлении ликвора. Гемодинамика в головном мозгу поддерживается пульсовыми движениями крови. Ритмические колебания объёма мозговых сосудов (пульсация мозга) связаны с активным сужением и расширением сосудов и перемещением ликвора, а также находятся в зависимости от ряда влияний, в частности  от сокращений сердца и дыхания (присасывающего действия грудной клетки, способствующего венозному оттоку от мозга).
Отток крови из полости черепа осуществляется по развитой венозной системе (вены, синусы, венозные выпускники), открыто сообщающейся с внечерепными венами. Анатомическое и функциональное единство мозговых вен с внечерепными венами и отсутствие в них клапанов обеспечивают возможность кровотока в разных направлениях – в зависимости
от местных условий и потребностей тканей в притоке и оттоке крови. Используя эти особенности венозного кровообращения головы,  при изучении церебральной гемодинамики собак получили экспериментальные данные, подтверждающие пульсовый характер движения крови в сосудах мозга в закрытом черепе. Постоянные пульсовые и дыхательные колебания внутричерепного давления в закрытом черепе, согласно их данным, возможны благодаря наличию своеобразных приспособительных механизмов: с одной стороны, существованию пульсового венозного оттока из полости черепа и, с другой, – благодаря перемещению ликвора из полости черепа в спинномозговую полость в связи с разными фазами дыхания.  В замкнутой полости черепа объём мозга колеблется незначительно благодаря тому, что он окружён со всех сторон несжимаемым ликвором и при пульсовых колебаниях давление крови встречает со всех сторон противодавление.
Церебральная гемодинамика, таким образом, отличается от кровоснабжения других органов не только большей интенсивностью и постоянством, но и особенностями коллатерального кровообращения, а также тесной взаимосвязью с ликворообращением. Последняя проявляется в большой взаимозависимости между венозным и ликворным давлением.
При венозном застое мозга развивается ликворная гипертензия. Наряду с существованием взаимосвязи между циркуляцией крови и ликвора имеется тесная взаимозависимость между
состоянием регионарного кровотока и функциональной активностью различных образований мозга. Усиление кровообращения в одних структурных образованиях мозга при их усиленной деятельности сопровождается уменьшением кровоснабжения других, находящихся в это время в состоянии относительного покоя.
1.2. Механизмы формирования реоэнцефалограммы 
Изменения импеданса между электродами, накладываемыми на кожные покровы головы, определяются сложным комплексом факторов, которые представлены на рис. 1.1.
Ведущими факторами, или возмущающими воздействиями, являются колебания системного венозного и артериального давления, а остальные играют модулирующую роль. Последние следует разделить на три группы. Первая – это факторы внутричерепной гемодинамики, определяющие информативность реоэнцефалограммы (РЭГ). Вторая группа  факторы, не связанные с внутричерепной гемодинамикой, т.е. факторы, являющиеся источником помех и снижающие информационную ценность РЭГ. Поэтому следует выяснить условия, при которых влияние внутричерепных факторов будет  наиболее выражено, а влияние помехонесущих факторов – минимальным. Исходя из схемы на рис. 1.1 очевидно, что внутричерепные гемодинамические и ликвородинамические факторы могут  иметь выраженное модулирующее влияние на РЭГ. Действительно, пульсовые изменения пассивных электрических  свойств внутричерепного содержимого определяются приростом кровенаполнения полости черепа за счёт пульсовых колебаний в артериальной и венозной системах головного мозга. В связи с особенностью биофизической структуры системы внутричерепной гемодинамики способность сосудов мозга вместить дополнительный объём крови по сравнению с  другими органами весьма ограничена. В механизмах компенсации систолического объёма крови особое значение приобретают такие факторы, как колебания внутричерепного давления, ускорение тока крови, передача артериальной пульсации на вены непосредственно через ликвор, перераспределение внутричерепного объёма между артериальной, венозной  кровью и ликвором. Электропроводность ликвора отличается от электропроводности крови, а последняя неодинакова в  различных участках сосудистой системы мозга. Таким образом, пульсовая волна РЭГ представляет собой комплексный
биофизический сигнал сложной природы, основная информационная ценность которого заключается в возможности судить  о пульсовых изменениях кровенаполнения мозговой ткани, что в свою очередь зависит от растяжимости стенок церебральных сосудов. Следовательно, РЭГ может отражать как структурные изменения стенок мозговых сосудов, например при атеросклерозе, так и динамические изменения их тонуса в ответ на функциональные нагрузки. Последнее может представить  интерес как неинвазивный методический подход для оценки адаптационных способностей сосудистой системы головного  мозга при тех или иных внешних воздействиях на организм или патологических состояниях. 


Рис. 1.1. Схема формирования РЭГ-волны

Влияние внечерепных гемодинамических факторов. Вопрос о соотношении вне- и внутричерепных факторов является наиболее спорным в физиологическом и биофизическом обосновании метода РЭГ. Как следует из рис. 1, внечерепные сосуды находятся под влиянием тех же гемодинамических факторов, что и внутричерепные. При этом их реакции на такие воздействия, как изменение парциального давления углекислого газа артериальной крови, колебания артериального давления, симпатическая стимуляция и некоторые другие воздействия, могут быть неодинаковыми и даже разнонаправленными. Изучение относительной роли внии внутричерепным осудов в генезе РЭГ проводится путём биофизического
анализа и путём экспериментального физиологического исследования.  Биофизический анализ токораспределения по внии внутричерепным тканям при наложении электродов на кожные
покровы головы показал, что полностью избежать шунтирования тока по экстракраниальным тканям не удаётся. Вследствие высокого сопротивления костей черепа наилучшие условия для прохождения тока в мозг создаются при наложении  электродов вблизи больших естественных отверстий черепа (глазниц и затылочного отверстия). Точная величина экстракраниального компонента РЭГ сигнала в настоящее время неизвестна, но всё же значительна. Поэтому для РЭГ метода, как и для всех других методов исследования мозгового кровообращения, проблема уменьшения этого компонента остаётся весьма актуальной. Стандартизация техники регистрации РЭГ позволит фиксировать  рассматриваемые погрешности и сделать результаты исследований сопоставимыми. К специальным способам снижения влияния внечерепных факторов при регистрации РЭГ относится одновременное снятие РЭГ и реограммы мягких тканей  головы с последующим электронным сопоставлением их и получением результирующей кривой, а также применение  защитных кольцевых или экранирующих электродов. Таким образом, несмотря на существенное модулирующее влияние колебаний кровенаполнения внечерепных тканей, РЭГ может сохранить свою информационную ценность, если данный фактор будет должным образом учитываться. Влияние изменений электрических свойств тканей на показания РЭГ. Согласно рис. 1, пульсовые волны РЭГ, особенно их амплитуды, должны зависеть от изменения соотношения между пассивными электрическими характеристиками сред и тканей, заполняющих полость черепа. Известно, что электрическое сопротивление крови зависит от самых разных  факторов. Заполняющая полость черепа кровь, ликвор, межклеточная жидкость являются основными путями проведения  электрического тока, поэтому как базовое сопротивление между электродами, так и его относительные изменения будут в первую очередь определяться соотношением жидкостной и клеточной фаз в исследуемой области. Об этом говорит значительное возрастание амплитуды пульсовых колебаний сопротивления между электродами.  Определённое значение для РЭГ имеют изменения электропроводности крови при её движении. Биофизический
анализ этого феномена в системе жёстких трубок показал, что изменение электропроводности крови определяется зарядом на поверхности эритроцитов и степенью их агрегации. Поскольку величина изменения электропроводности крови  при движении зависит от частоты измерительного тока, то диапазон частот, рекомендованный для регистрации РЭГ, выбран с учётом данного феномена и погрешность за счёт скоростных изменений кровотока составляет не более 8…10 %.  Исследования показали, что объёмный компонент реографического сигнала во много раз превосходит скоростной компонент. Поэтому можно сказать, что пульсовая волна РЭГ отражает объёмные изменения кровенаполнения исследуемого  участка мозга.  Все вышеизложенное указывает на то, что динамика показателей РЭГ определяется не только процессами в системе  внутричерепной гемоциркуляции, но и изменениями электрических характеристик крови и ткани мозга, поэтому не следует использовать данный метод при таких воздействиях на организм, которые оказывают существенное влияние на электрические характеристики крови и ткани мозга. Учёт изложенных выше фактов позволит повысить информационную  ценность данной методики.
1.3. Аспекты применения реоэнцефалографии для оценки мозгового кровообращения 
 
Реография является неинвазивным методом исследования системного и регионарного кровообращения, который основан на регистрации изменений сопротивления (импеданса) биологического объекта при его сканировании переменным  током высокой частоты. . В последнее время наблюдается тенденция к вытеснению РЭГ ультразвуковой допплерографией (УЗДГ). Но игнорирование реографического  метода является преждевременным и необоснованным. Прежде всего, учёными подвергается сомнению генез реографической кривой, получаемой при проведении РЭГ-исследования. В качестве доказательства несостоятельности реографического метода его противники традиционно пытаются обосновать экстракраниальный генез РЭГ-кривой. По их мнению,
изменения импеданса обусловлены влиянием внемозгового кровотока. Основной аргумент при этом сводится к большому сопротивлению костей черепа, препятствующему прохождению зондирующего тока. А.А. Кедров, обсуждая возможность  применения импедансного метода в оценке мозгового кровообращения, пишет: «… с наружно расположенных электродов внутричерепной кровоток не регистрируется, и реограммы отражают только кровообращение в околочерепных сосудах». Однако, еще в 1961 г. Кунерт пришёл к выводу, что кость не является существенным препятствием для прохождения  зондирующего тока, поскольку обладает в основном ёмкостным сопротивлением. Импеданс обескровленной и неживой кости достигает 4000 Ом·см, но величина импеданса в живом черепе намного меньше около 200 Ом·см, так как сопротивление костей варьируется в зависимости от количества крови и форменных элементов. Следовательно, кости черепа не препятствуют прохождению зондирующего тока в полость черепа и отражению на РЭГ колебаний интракраниального импеданса.  Для проведения реографического исследования необходимо использовать реограф – прибор, работающий по принципу генератора тока высокой частоты. Оптимальной частотой зондирующего тока при проведении РЭГ-исследования является 50…100 кГц – именно при таких значениях сводится к минимуму эффект поляризации, возникающий на границе электрод ткань, что даёт возможность просканировать биологический объект более глубинно. При проведении РЭГ-исследования производится сканирование двух основных бассейнов: внутренней сонной артерии (FM-отведение) и вертебро-базиллярного бассейна (ОМ-отведение). Это основные отведения. Кроме основных существуют и дополнительные отведения, которые позволяют избирательно судить о состоянии бассейнов передней мозговой артерии (ПМА), средней  мозговой артерии (СМА) и задней мозговой артерии (ЗМА), а также о состоянии экстракраниального кровотока в общей
сонной артерии (ОСА) и позвоночных артериях (ПА). В чём заключается преимущество РЭГ перед активно развивающимся методом УЗДГ? При проведении УЗДГ не возникает никаких трудностей во время исследования экстракраниального кровотока. Ультразвук беспрепятственно проникает через мягкие ткани, что дает возможность чёткой визуализации сосуда. Особенно ценную информацию можно  получить при исследовании комплекса интима-медиа, когда удаётся достаточно чётко визуализировать атеросклеротические бляшки. При наличии соответствующей программы удаётся установить степень редукции просвета сосуда. Что же касается исследования внутричерепной гемодинамики, то тут возникает ряд методических проблем. Прежде всего, по своей физической природе ультразвук обладает способностью отражаться от поверхности с большой плотностью. Учитывая этот факт и анатомические особенности черепа, были выбраны так называемые «окна визуализации»: височные (для изучения кровотока в ПМА, СМА и ЗМА) и подзатылочная ямка (для исследования вертебро-базиллярного бассейна). Кроме того, при проведении транскраниальной УЗДГ (ТКУЗДГ) может возникнуть ещё одна методическая трудность, связанная с утолщением кости в области «окон визуализации», в результате чего возникают существенные трудности при оценке кровотока в исследуемом сосуде. Таким образом, у импедансного и ультразвукового методов есть один общий барьер  кости черепа. Однако, что касается РЭГ, то как уже было показано, в живом организме кость не является значимым препятствием зондирующему току. Немаловажен и тот факт, что РЭГ является абсолютно безопасным для пациента, так как не возникает механического сотрясения на клеточном и субклеточном уровнях, что может наблюдаться при ТКУЗДГ. Существует ещё один факт, выгодно отличающий РЭГ от ТКУЗДГ, который отмечает Л.Б. Иванов: «Допплерография характеризует кровоток на уровне конкретного участка магистрали исследуемой артерии и ему неведомо, что творится на уровне концевых разветвлений  этого сосуда». РЭГ позволяет исследовать весь бассейн того или иного сосуда, включая магистральные артерии и микроциркуляторное русло, а также косвенно судить о состоянии венозной гемодинамики.  Следовательно, по данным реографического метода можно косвенно судить и о состоянии венозного оттока из исследуемой области. Наиболее достоверную и полную информацию о состоянии кровоснабжения мозга можно получить,  используя только расчётный метод обработки реограмм, например отношение амплитуды РЭГ к общему сопротивлению  под электродами этого отведения отражает объём пульсовой волны (показатель относительного объёмного пульса), отношение длительности восходящей части к длительности всей волны является показателем сосудистого тонуса. Вычисляются также и другие характеристики РЭГ, связанные с процессом кровообращения. При этом нивелируется субъективизм, присущий визуальному анализу.
1.4. Информационная направленность реоэнцефалографии 
Пульсовые изменения импеданса между электродами, наложенными на кожные покровы головы человека, при соблюдении необходимых условий отражают с определённой погрешностью колебания кровенаполнения полости черепа, а их динамика в короткие промежутки времени – функциональные сдвиги в системе внутричерепной гемоциркуляции. Поэтому для выяснения информативной направленности реоэнцефалографии (РЭГ) следует рассмотреть взаимосвязь между  пульсовыми измерениями кровенаполнения области черепа и другими показателями деятельности системы внутричерепной гемодинамики. Эта система обладает сложной биофизической структурой, функциональные связи которой представлены на рис. 1.2.
Как следует из этой схемы, кровенаполнение полости черепа является производной величиной, зависящей при стабильности показателей системной гемодинамики от тонуса артерий и вен головного мозга и от состояния ликвородинамики.  Рост или падение мозгового кровотока может в зависимости от вызывающих их причин сопровождаться как однонаправленными, так и разнонаправленными изменениями кровенаполнения полости черепа. Качественная направленность  изменений данного показателя и мозгового не всегда совпадает. Так, изменения локального мозгового кровотока и импеданса ткани мозга при ряде тестов и поведенческих реакций могут быть разнонаправленными. Вместе с тем нельзя отрицать, что при определённых условиях исследования можно наблюдать положительную корреляцию между некоторыми  показателями РЭГ-волны и изменениями мозгового кровотока. Найдена хорошая корреляция между установившимися  значениями локального кровотока и импеданса в этой же зоне мозга при внутричерепной артериальной гипермии. Но такая корреляция может наблюдаться лишь при строго определённых сочетаниях показателей, входящих в схему (рис.1.2).

Рис. 1.2. Схема функциональных взаимосвязей между элементами системы внутричерепной гемоликвородинамики:
(+) – положительная связь; (–) – отрицательная связь
Таким образом, информационная направленность РЭГ ограничивается в основном возможностью комплексного отражения особенностей растяжимости сосудов артериального и венозного отделов сосудистой системы головного мозга и состояния системы ликвородинамики. Имеются многочисленные данные, показывающие чёткую зависимость показателей РЭГ от возрастных изменений свойств мозговых сосудов, степени их склерозирования, состояния их тонуса при гипертонической болезни и т.п. В последнее время успешно развивается идея о двухкомпонентности генеза РЭГ – влиянии относительного кровенаполнения как церебральных артерий, так и вен, и на основании этого предлагается способ автоматической обработки РЭГ. Однако до сих пор мало уделяется внимания роли третьего компонента – ликвородинамике, который согласно рис. 1.2 тесно связан с кровенаполнением полости черепа.Для уточнения информативной целенаправленности РЭГ следует найти пути для трёх видов возможных влияний на  показатели РЭГ, а именно изменений тонуса церебральных сосудов, их кровенаполнения и изменений в системе ликвородинамики.  Один из возможных путей дифференцирования влияния каждого из упомянутых трех видов влияний на показатели  РЭГ заключается в использовании направленных функциональных нагрузок с тем, чтобы, сопоставляя ответы на них при разных состояниях организма, судить об изменении того или иного из интересующих показателей. Кроме  ункциональных нагрузок физической природы, информативным является использование фармакологических препаратов. Особенно  часто применяются нитроглицериновая проба, а также проба с вдыханием СО2
1.5.Объективные показатели реоэнцефалограммы  
Пульсовые волны РЭГ представляют собой периодические, синхронные с пульсом колебания сложной формы, в которых заключена информация о системе внутричерепного кровообращения. По внешнему виду нормальная РЭГ-волна напоминает сфигмограмму и ей свойственно наличие некоторых характерных точек (рис. 1.3): О – начало подъёма; А – вершина волны; В – вторая (диастолическая) вершина; С – инцизура. На базовой линии им соответствуют временные  точки. Исходя из этих характерных точек, в РЭГ-волне выделяют следующие показатели.
Амплитудные показатели. К ним относятся величины амплитуд реоволны в характерных точках, выраженные в  омах или в относительных единицах. Все амплитудные показатели принято относить к максимальной амплитуде в точке  А в процентах. Целесообразно определить амплитуду реоволны ещё в точке А1 – на середине дикротической части волны, между точкой А и концом волны.  Временные показатели РЭГ. Они представляют собой промежутки времени между зубцом R на ЭКГ, а также между началом РЭГ-волны и другими характерными точками на РЭГ-волне. Существует мнение, что временные показатели РЭГ менее  подвержены влиянию помех по сравнению с амплитудными показателями и более приемлемы для автоматического анализа РЭГ. Для более точного определения характерных точек на пульсовой РЭГ-волне используется способ её электрического дифференцирования – регистрации первой производной, что позволяет выявить и относительные изменения скоростей нарастания и спадов РЭГ-волны. Принципиально новой информации первая производная РЭГ по сравнению с самой волной РЭГ не содержит, но позволяет сделать более наглядными отдельные характерные элементы РЭГ-волны. Следует  стандартизировать постоянную времени дифференцирования, от которой зависят показатели первой производной кривой  РЭГ. Приборы с постоянной времени дифференцирования менее 0,001 дают минимальную погрешность.
 


Рис. 1.3. Характерные точки РЭГ-волны и связанные с ними амплитудные, временные и планиметрические показатели

Планиметрические показатели: площадь всей реоволны и отдельных её участков, отнесённых ко всей площади, в  процентах. Они определяются как участки, ограниченные базисной линией и амплитудными отрезками в характерных  точках на кривой реоволны.  Спектральные показатели. Вышеуказанные амплитудные, временные и планиметрические показатели зачастую не
могут объективно и полно описать характерные изменения формы волны РЭГ, наблюдающиеся в различных экспериментальных ситуациях. В связи с этим в литературе бытуют описательные характеристики РЭГ-волны типа «добавочные  волны», «куполообразная форма» и т.п. С помощью Фурье-анализа можно полно, объективно и единообразно описать волну любой формы.
Комбинированные показатели. К ним относятся различные сочетания амплитудных и временных показателей, угловые показатели. Например, угол восхождения анакроты (угол α) может быть выражен через тангенс этого угла А/а (рис.1.3). К этой группе показателей можно отнести различные сложные формулы для расчёта объёмного мозгового кровотока, суммарного цереброваскулярного сопротивления, тонуса сосудов и т.д., в которые помимо амплитудных и временных  показателей входят такие показатели, как частота пульса, среднее артериальное давление, параметры первой производной  и т.п.  Наиболее распространенные показатели РЭГ и приписываемое им информационное значение представлены в табл. 1.1. При оценке РЭГ учитывают форму и время распространения волны каждого отведения, межполушарную асимметрию, а также изменения РЭГ при функциональных пробах. Интерпретация выделенных характеристик реоэнцефалографической волны сводится к следующему: сглаженность формы оценивается как уменьшение эластичности стенок сосудов, укорочение времени распространения волны говорит о повышении тонуса, амплитуда волны отражает интенсивность пульсовых колебаний.

табл 1.1. Показатели реоэнцефалограммы

У здоровых людей моложе 30 лет волна РЭГ напоминает треугольник. Восходящая часть крутая и почти не меняет наклона до самой вершины. В первой половине нисходящей части имеется от 1 до 3 дополнительных колебаний. Продолжительность восходящей части составляет 0,1 с ± 10 %. В возрасте 30 – 40 лет продолжительность восходящей части до 0,15 с ±
10 %.  Иногда бывает горбовидная форма волны, абсолютной вершиной которой является поздняя систолическая волна. Количество дополнительных колебаний уменьшено до 1. В 40 – 50 лет продолжительность восходящей части до 1,7 с ± 10 %.  Горбовидная форма волны преобладает. В 50 – 60 лет восходящая фаза достигает 0,19 с ± 10 %, вершина становится более
закругленной, но инцизура на нисходящей части ещё заметна. У лиц старше 60 лет продолжительность восходящей части  больше 0,21 с. Форма волны аркообразная, дополнительные волны могут отсутствовать. Межполушарная асимметрия  амплитуды до 10 % считается нормальной во всех возраст-ных группах.  РЭГ считается патологической тогда, когда регистрируется форма волны, характерная для человека более старшего  возраста, чем пациент; отмечается существенная межполушарная асимметрия по форме волны; межполушарная асимметрия амплитуды больше 10 %; элементы восходящей части одного полушария запаздывают больше, чем на 0,015 с по сравнению с запаздыванием в другом полушарии; отмечается углубление инцизуры со сдвигом её вниз по нисходящей  части кривой; выявляется значительное снижение или повышение волн; уменьшается время распространения реографической волны.  Частная семиотика РЭГ. Церебральный атеросклероз. В начальных стадиях появляется некоторая сглаженность  кривой и плато на вершине волны. При значительной выраженности этих изменений форма волны становится куполообразной или аркообразной, уменьшаются время распространения и амплитуда волны. Все это указывает на потерю эластичности и уменьшение кровенаполнения сосудов.
Гипертоническая болезнь. В транзиторной стадии отмечается смещение дикротического зубца ближе к вершине с  тенденцией к образованию плато. Дальнейшее развитие процесса приводит к уменьшению амплитуды волны и закруглению вершины; часто абсолютной вершиной является поздняя систолическая волна, а дикротический зубец располагается выше изгиба. В склеротической фазе волна принимает аркообразную форму.  Головная боль сосудистого генеза. При мигренозных болях, локализованных преимущественно в одном полушарии,
на РЭГ отмечается межполушарная асимметрия с повышением амплитуды на поражённой стороне. При вегетососудистой  дистонии в зависимости от патогенетического механизма регистрируются:  а) плато на вершине волны, хорошо выраженные дополнительные колебания, повышенная амплитуда, что свидетельствует о понижении сосудистого тонуса с увеличением кровенаполнения и растяжением стенок сосудов;  б) закругленная вершина, плохо выраженные дополнительные колебания, уменьшенная амплитуда, что свидетельствует о повышении тонуса сосудов.  Закрытая черепно-мозговая травма. Гематома на стороне поражения приводит к уменьшению амплитуды и сглаженности дополнительных колебаний, что указывает на затруднение кровотока в связи со сдавлением мозга. При ушибе на  стороне контузии регистрируются увеличение амплитуды и угла наклона восходящей фазы волны, углубление инцизуры. Сотрясение мозга не вызывает асимметрии. В зависимости от тяжести травмы отмечаются изменения, характерные для  повышенного или пониженного тонуса сосудов. Геморрагический инсульт. Изменения РЭГ более выражены, чем при ишемическом инсульте, распространяются на  оба полушария с некоторым акцентом на поражённом полушарии. Амплитуда РЭГ уменьшена и волна уплощена.Нередко наблюдаются явления атонии с резким укорочением нисходящей части кривой и перемещением инцизуры вниз к основанию волны.

1.6. Выбор способа снятия реоэнцефалограммы и применяемых при этом отведений  

В реографии для регистрации пульсовых изменений пассивных электрических характеристик тканей и органов человека используются две схемы исследования: двухэлектродная (биполярная) и четырёхэлектродная (тетраполярная). При биполярном способе на исследуемый участок накладываются два электрода, каждый из которых является и зондирующим и измерительным, т.е. как двухполюсник подключаются в одно из плеч измерительной мостовой схемы. Напротив, в тетраполярной схеме предусмотрено наложение на кожные покровы двух или более электродов, и таким образом разделение подачи зондирующего тока и измерения сопротивления исследуемой области. В данной работе для исследования сосудистой системы головного мозга будет использоваться тетраполярный способ регистрации реоэнцефалограммы.  Основным преимуществом тетраполярного режима исследования является почти полное исключение влияния со-
противления поверхностных тканей под воспринимаемым электродом на точность измерения, что даёт возможность регистрировать РЭГ даже при физической нагрузке. При регистрации реоэнцефалограммы на кожные покровы головы накладываются металлические электроды, площадь которых варьирует от 2 до 10 см2. Поскольку при накожном расположении электродов основное сопротивление падает на верхний роговой слой кожи, контактирующий с электродом, то кожа обезжиривается, между электродом и кожей  прокладывается слой марли, смоченной физиологическим раствором. Иногда применяются электродные пасты, используемые при регистрации электроэнцефалограммы. Установлено, что для живых тканей характерны поляризационные явления при прохождении через них постоянного  электрического тока. При переменном токе электрическая проводимость живых тканей зависит от частоты. Строгий ко-
личественный анализ этого явления позволил определить оптимальные частотные диапазоны для регистрации реограммы:50…100 кГц. Сила измерительного тока определяется двумя соображениями. С точки зрения точности измерений, она  должна быть достаточно высокой, но при этом в несколько раз меньше порогового раздражающего значения. Наилучшим
образом этим условиям соответствует величина 1,5…3 мА. В настоящее время используются несколько вариантов наложения электродов на кожные покровы головы человека. В
последние годы наряду с обычным глобальным фронто-мастоидальным (F – M) отведением применяют бифронтальное (F2 –F3), битемпоральное (T – T1), бимастоидальное (M – M1) и биокципитальное (O – O) расположения электродов (рис. 1.4, а) с  целью выявления зависимости суммарного кровенаполнения исследуемых областей от состояния внутренней сонной и
позвоночной артерий. Однако при такой поперечной реоэнцефалографии дефицит кровенаполнения на одной стороне  может маскироваться, сглаживаться хорошим кровоснабжением на противоположной стороне. В этом отношении более перспективна и ценна продольная реоэнцефалография с симметричных участков различных областей головы, так как она даёт и представление о гемодинамике в симметричных областях мозга. Ряд учёных применяли фронтальное, роландо-темпоральное и окципито-париетальное отведения для оценки кровенаполнения в бассейнах передней, средней и задней мозговых артерий.  При использовании переменного тока высокой частоты (100 кГц) кожа и кость не являются препятствием для прохождения тока; поэтому можно записать РЭГ практически с любой области конвекситальных отделов больших полушарий головного мозга.  Для исследования суммарного кровенаполнения больших полушарий применялось фронто-мастоидальное (F – M) расположение электродов. Для оценки состояния кровоснабжения преимущественно в бассейне передней мозговой артерии лобное (F – F1), лобно-центральное (F – С) и лобно-височное (F – Т) отведения, для оценки состояния гемодинамики в бассейне средней мозговой артерии – теменно-височное (Р – Т), роландо-височное (Р – Т), теменно-центральное (Р – С) и височно-височные (T1 – T2). Кроме того, применялись окципито-мастоидальное (О – М) и окципито-парие-тальное (О – Р) отведения, отражающие состояние гемодинамики преимущественно в системе позвоночной артерии (рис. 1.4, б, в).  Приблизительная схема распределения высокочастотного тока между глобальными (F – M), а также регионарными  (F1 – F2, C – F2, R – T, P – C, O – M, O – P) электродами представлена на рис. 1.4, г.


Рис. 1.4. Схема расположения электродов:
а – при поперечной реоэнцефалографии;
б, в – при продольной реоэнцефалографии симметричных
участков головного мозга; г – схема распределения высокочастотного тока между глобальными и регионарными электродами
Экран монитора с графиками реоэнцефалографии
программно-технического комплекса SFERA V 4.7
Рис. 1.5. Экран монитора с графиками реоэнцефалограммы
Пример заключения по интегральной реографии
Реографическое исследование
Пациент: Иванов Ю.И. М 29 Обследование 28.10.93 11.00
Рост (см): 177 Вес тела (кг): 71 Артериальное давление: 120/80
Определение центр. гемодинамики методом интегральной реографии Тищенко
 

 

2. Заключение 

Реоэнцефалография (РЭГ) - неинвазивный метод исследования сосудистой системы головного мозга, основанный на записи изменяющейся величины электрического сопротивления тканей при пропускании через них слабого электрического тока высокой частоты. Является видом реографии. Физической основой метода реоэнцефалографии (РЭГ) является разница между электропроводностью крови и тканей тела, в связи с чем пульсовые колебания кровенаполнения вызывают прежде всего колебания электропроводности исследуемого участка.
 
Реоэнцефалографическое исследование позволяет получать объективную информацию о тонусе, эластичности стенки и реактивности сосудов мозга, периферическом сосудистом сопротивлении, величине пульсового кровенаполнения. Достоинства метода — его относительная простота, возможность проведения исследований практически в любых условиях и в течение длительного времени, получение раздельной информации о состоянии артериальной и венозной систем мозга и о внутримозговых сосудах различного диаметра.

3.  источники  

1.  Биофизическое моделирование диагностического процесса – век торкардиографии / Вестник новых медицин-
     ских технологий. – 1999. – Т. 4. – № 3–4.
2.  Белоусов, В.Е. Математическая электрокардиология / В.Е. Белоусов. – Минск : Беларусь,1969. – 143 с.
3.  Дорофеева, З.З. Принципы векторкардиографии / З.З. Дорофеева. – М. : Медгиз, 1963. – 96 с.
 

Комментарии

Отправить комментарий

Содержание этого поля является приватным и не предназначено к показу.
  • Доступны HTML теги: <a> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <img> <table> <td> <tr> <hr> <div> <span> <h1> <h2> <h3> <h4> <h5> <h6> <p> <pre> <adress> <center>
  • Строки и параграфы переносятся автоматически.

Подробнее о форматировании

3 + 0 =
Решите эту простую математическую задачу и введите результат. Например, для 1+3, введите 4.

Комментарии