информационный портал по вопросам биомедицинской инженерии

Сейчас на сайте 0 пользователей и 0 гостей.

Вход в систему

Недавно присоединились

  • Олег Матвеевич
  • вусенко алена ива...
  • Краснозобов Жигер...
  • Корсаков Александ...
  • Пирогов Дмитрий В...
аватар: Аль-кавати Ахмед Абдо

1. СТРУКТУРНАЯ СХЕМА СЪЕМА, ПЕРЕДАЧИ И РЕГИСТРАЦИИ МЕДИКО-БИОЛОГИЧЕСКОЙ ИНФОРМАЦИИ

Для того чтобы получить и зафиксировать информацию о состоянии и параметрах медико-биологической системы, необходимо иметь целую совокупность устройств.

Первичный элемент этой совокупности - чувствительный элемент средства измерений, называемыйустройством съема, - непременно контактирует или взаимодействует с самой системой, остальные элементы находятся обычно обособленно от медико-биологической системы, в некоторых случаях части измерительной системы могут быть даже отнесены на значительные расстояния от объекта измерений.

Структурная схема измерительной цепи изображена на рис.1. Эта схема является общей и отражает всевозможные реальные системы, применяемые в медицине для диагностики и исследования. В устройствах медицинской электроники чувствительный элемент либо прямо выдает электрический сигнал, либо изменяет таковой сигнал под воздействием биологической системы. Таким образом, устройство съема преобразует информацию медико-биологического и физиологического содержания в сигнал электронного устройства. В медицинской электронике используются два вида устройств съема: электроды и датчики.

Завершающим элементом измерительной цепи является средство измерений, которое отображает или регистрирует информацию о биологической системе в форме, доступной для непосредственного восприятия наблюдателем.


 

рис.1.
 

 

Во многих случаях между устройством съема и средством измерений имеются элементы, усиливающие начальный сигнал  и передающие его на расстояние.

В структурной схеме X означает некоторый измеряемый параметр биологической системы, например давление крови. Буквой Гобозначе-на выходная величина, например сила тока (мА) на измерительном приборе или смещение писчика (мм) на бумаге регистрирующего прибора. Для вычисления должна быть известна зависимость Υ = f(X).
 

2. ЭЛЕКТРОДЫ ДЛЯ СЪЕМА БИОЭЛЕКТРИЧЕСКОГО СИГНАЛА

Электроды - это проводники специальной формы, соединяющие измерительную цепь с биологической системой.

При диагностике электроды используются не только для съема электрического сигнала, но и для подведения внешнего электромагнитного воздействия, например в реографии. В медицине электроды используются также для оказания электромагнитного воздействия с целью лечения и при электростимуляции.

К электродам предъявляются определенные требования: они должны быстро фиксироваться и сниматься, иметь высокую стабильность электрических параметров, быть прочными, не создавать помех, не раздражать биологическую ткань и т.п.

Важная физическая проблема, относящаяся к электродам для съема биоэлектрического сигнала, заключается в минимизации потерь полезной информации, особенно на переходном сопротивлении электрод-кожа. Эквивалентная электрическая схема контура, включающего в себя биологическую систему и электроды, изображена на рис.2 (8бп - э.д.с. источника биопотенциалов; r - сопротивление внутренних тканей биологической системы; R - сопротивление кожи и электродов, контактирующих с ней; Квх - входное сопротивление усилителя биопо-тенциалов). 

 

Можно условно назвать падение напряжения на входе усилителя полезным, так как усилитель увеличивает именно эту часть э.д.с. источника. Падение напряжения Ir и IR внутри биологической системы и на системе электрод-кожа в этом смысле бесполезно. Так как 8бп задана, а повлиять на уменьшение Ir невозможно, то увеличить IR^ можно лишь уменьшением R и прежде всего уменьшением сопротивления контакта электрод-кожа.

Для уменьшения переходного сопротивления электрод-кожа стараются увеличить проводимость среды между электродом и кожей, используют марлевые салфетки, смоченные физиологическим раствором, или электропроводящие пасты. Можно уменьшить это сопротивление, увеличив площадь контакта электрод-кожа, т.е. увеличив размер электрода, но при этом электрод будет захватывать несколько эквипотенциальных поверхностей  и истинная картина электрического поля будет искажена.

По назначению электроды для съема биоэлектрического сигнала подразделяют на следующие группы:

1) для кратковременного применения в кабинетах функциональной диагностики, например для разового снятия электрокардиограммы;

2) для длительного использования, например при постоянном наблюдении за тяжелобольными в условиях палат интенсивной терапии;

3) для использования на подвижных обследуемых, например в спортивной или космической медицине;

4) для экстренного применения, например в условиях скорой помощи. Ясно, что во всех случаях проявится своя специфика применения

электродов: физиологический раствор может высохнуть и сопротивление изменится, если наблюдение биоэлектрических сигналов длительное, при бессознательном состоянии пациента надежнее использовать игольчатые электроды и т.п


рис.2.

 

При пользовании электродами в электрофизиологических исследованиях возникают две специфические проблемы. Одна из них - возникновение гальванической э.д.с. при контакте


рис.3.                                                  рис.4.  
 

электродов с биологической тканью. Другая - электролитическая поляризация электродов, что проявляется в выделении на электродах продуктов реакций при прохождении тока. В результате возникает встречная по отношению к основной э.д.с.

В обоих случаях возникающие э.д.с. искажают снимаемый электродами полезный биоэлектрический сигнал. Существуют способы, позволяющие снизить или устранить подобные влияния, однако эти приемы относятся к электрохимии и в этом курсе не рассматриваются.

В заключение рассмотрим устройство некоторых электродов.

Для снятия электрокардиограмм к конечностям специальными резиновыми лентами прикрепляют электроды - металлические пластинки с клеммами 1 (рис.3), в которые вставляют и закрепляют штыри кабелей отведений. Кабели соединяют электроды с электрокардиографом. На груди пациента устанавливают грудной электрод 2. Он удерживается резиновой присоской. Этот электрод также имеет клемму для штыря кабеля отведений.

В микроэлектродной практике используют стеклянные микроэлектроды. Профиль такого электрода изображен на рис.4, кончик его имеет диаметр 0,5 мкм. Корпус электрода является изолятором, внутри находится проводник в виде электролита. Изготовление микроэлектродов и работа с ними представляют определенные трудности, однако такой микроэлектрод позволяет прокалывать мембрану клетки и проводить внутриклеточные исследования.
 

3. ДАТЧИКИ МЕДИКО-БИОЛОГИЧЕСКОЙ ИНФОРМАЦИИ

Многие медико-биологические характеристики нельзя снять электродами, так как они не отражаются биоэлектрическим сигналом: давление крови, температура, звуки сердца и многие другие. В некоторых случаях медико-биологическая информация связана с электрическим

сигналом, однако к ней удобнее подойти как к неэлектрической величине (например, пульс). В этих случаях используют датчики (измерительные преобразователи).

Датчиком называют устройство, преобразующее измеряемую или контролируемую величину в сигнал, удобный для передачи, дальнейшего преобразования или регистрации. Датчик, к которому подведена измерительная величина, т.е. первый в измерительной цепи, называется первичньм.

В рамках медицинской электроники рассматриваются только такие датчики, которые преобразуют измеряемую или контролируемую неэлектрическую величину в электрический сигнал.

Использование электрического сигнала предпочтительнее, чем иных, так как электронные устройства позволяют сравнительно несложно усиливать их, передавать на расстояние и регистрировать. Датчики подразделяются на генераторные и параметрические.

Генераторные - это датчики, которые под воздействием измеряемого сигнала непосредственно генерируют напряжение или ток. Укажем некоторые типы этих датчиков и явления, на которых они основаны:

1) пьезоэлектрические, пьезоэлектрический эффект 

2) термоэлектрические, термоэлектричество 

3) индукционные, электромагнитная индукция 

4) фотоэлектрические, фотоэффект 

Параметрические - это датчики, в которых под воздействием измеряемого сигнала изменяется какой-либо параметр. Укажем некоторые типы этих датчиков и измеряемый с их помощью параметр:

1) емкостные, емкость;

2) реостатные, омическое сопротивление;

3) индуктивные, индуктивность или взаимная индуктивность.

В зивисимости от энергии, являющейся носителем информации, различают механические, акустические (звуковые), температурные, электрические, оптические и другие датчики.

В некоторых случаях датчики называют по измеряемой величине; так, например, датчик давления, тензометрический датчик (тензодат-чик) - для измерения перемещения или деформации и т.д.

Приведем возможные медико-биологические применения указанных типов датчиков (табл. 1).

Датчик характеризуется функцией преобразования - функциональной зависимостью выходной величины у от входной х, которая описывается аналитическим выражением у = Дх) или графиком. Наиболее простым и удобным случаем является прямо пропорциональная зависимость у = 1сх.

Таблица .1

 

Примечание. АД - артериальное давление крови; БКГ - баллистокардиограмма; ФКГ - фонокардиограмма; ОГГ - оксигемография; Т - температура; ДЖ - давление в желудочно-кишечном тракте.

 

Она в зависимости от вида датчика выражается в омах на миллиметр (Ом/мм), в милливольтах на кельвин(мВ/К) и т.д. Чувствительность последовательной совокупности датчиков равна произведению чувствительности всех датчиков.

Существенны временные характеристики датчиков. Дело в том, что физические процессы в датчиках не происходят мгновенно, это приводит к запаздыванию изменения выходной величины по сравнению с изменением входной. Аналитически такая особенность приводит к зависимости чувствительности датчика от скорости изменения входной величины dx/dt или от частоты при изменении х по гармоническому закону.

При работе с датчиками следует учитывать возможные специфические для них погрешности. Причинами погрешностей могут быть:

1) температурная зависимость функции преобразования;

2) гистерезис - запаздывание у от х даже при медленном изменении входной величины, происходящее в результате необратимых процессов в датчике;

3) непостоянство функции преобразования во времени;


рис.5.

4) обратное воздействие датчика на биологическую систему, приводящее к изменению показаний;

5) инерционность датчика (пренебрежение его временными характеристиками) и др.

Конструкция датчиков, используемых в медицине, весьма разнообразна: от простейших (типа термопары) до сложных допплеровских датчиков. Опишем в виде примера весьма простой датчик частоты дыхания - реостатный (резистивный).

Этот датчик (рис.5) выполнен в виде резиновой трубки 1, которая заполнена мелким угольным порошком 2.С торцов трубки вмонтированы электроды 3. Через уголь можно пропускать ток от внешнего источника 4.

Если трубкой опоясать грудную клетку или, как это обычно делается, прикрепить к концам трубки ремень и охватить им грудную клетку, то при вдохе трубка растягивается, а при выдохе - сокращается. При этом изменяется электрический контакт между частицами угольного порошка и соответственно изменяется сопротивление датчика. Сила тока в цепи будет изменяться, что можно зафиксировать, используя соответствующую измерительную схему.
В заключение отметим, что датчики являются техническими аналогами рецепторов биологических систем.

Источники:
-http://vmede.org/sait/?id=Medbiofizika_remizov_2012&menu=Medbiofizika_remizov_2012&page=28
 

.

Комментарии